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Abstract

Geisz, Joseph (M.S., Applied Mathematics)
3D Extension of the Sierpinski Relatives and an Analysis of their Persistent Homology

Thesis directed by Dr. James Meiss

The Sierpinski relatives are a class of fractals that have been studied and characterized ex-
tensively. They serve as an excellent introductory example of self-similarity. While topological
information about these fractals can be derived analytically, it has been demonstrated that “per-
sistent homology”, a concept in topological data analysis, can be applied to discrete point-set
approximations of the fractals in order to reveal information about the underlying structure of the
set. In this thesis we describe the Sierpinski relatives and some of the mathematical foundations
of persistent homology, a fascinating and evolving field at the intersection of pure mathematics
and computer science. We then propose a new set of fractals that are analogous to the Sierpinski
relatives but are 3-dimensional. This set contains many more fractals than the classical 2D relatives
and has more topological and geometric variation amongst its elements. The set contains elements
with a variety of fractal dimensions, and topological properties that are not possible in R%2. We then

demonstrate the use of persistent homology techniques to analyze the structure of these fractals.
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Chapter 1

Background

1.1 Simplicial Homology

From dynamical system attractors to real world data, we often wish to classify sets according to
their general “shape”. Some of the most intuitive ways to classify sets such as these end up being the
most difficult to describe mathematically. For example, how many “parts” or distinct components
make up the whole set? Is it composed of a singular object or a collection of separate pieces? Does
the object have a hole like a donut where a string could pass through the middle? Or does it have
multiple holes? Is the object hollow like a balloon or solid all the way through like a rock? Does it

have many balloon-like voids like a block of swiss cheese?

1.1.1 Betti Numbers

Topology allows us to quantify such descriptors with Betti numbers. The kth Betti number or (i
essentially gives the number of k-dimensional holes in an object. The Oth Betti number describes
the number of connected components in a set, or how many pieces make up the whole object. The
1st Betti number describes the number of holes through an object. The 2nd Betti number is the
number of voids within 3d objects, like the inside of a balloon. Figure 1.1 illustrates the concept
of Betti numbers. The true definition of a Betti number extends to higher dimensional spaces, but
a set can only have a non-zero kth Betti number in R" if k¥ < n. Despite the relatively intuitive
explanation of these numbers in 3D, it takes many deep mathematical concepts to describe them

rigorously and compute them. For more in-depth descriptions see [1] or [2].
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Figure 1.1: The first object (from left to right) has Sy = 1 because it is only a single connected
component. The second object has 5y = 2 because it is composed of two disconnected components.
The third, a solid torus, has 81 = 1 because of the hole through the middle. The last, a ball with

two balls removed from the interior, has S5 = 2 because it contains two voids inside.

Most of Topology is not well suited for computers. Arbitrary topological spaces are very difficult
or impossible to describe numerically. However simplicial complexes, a specific type of space, are
easy to describe to a computer. Simplicial Homology, one of many homology theories, use simplicial
complexes which “triangulate” a space to define homology groups and from these groups define Betti
numbers. We explain the many ideas needed for this definition in the following section, and return

to Betti numbers again when we have enough background to describe them rigorously.

1.1.2 Simplicial Complexes
Oriented Simplicies

Geometrically, an oriented k-simplex is the convex hull of k41 geometrically independent points
{20, 21, ..., 21} in R with k¥ < n. In R? we can have 4 different kinds of oriented simplexes, shown
in Figure 1.2. A 0-Simplex is a single point, a 1-Simplex is two points and the line between them,
a 2-Simplex is 3 points and the triangle formed with the points as verticies, and a 3-Simplex is
a 3D tetrahedron. Higher dimensional simplices cannot be visualized in 3 dimensions but can be
thought of as extensions of these. We can denote a k-simplex as o* = [0, 21, ..., 2], and can think
of the simplex as purely an abstract or algebraic object independent of the geometry of the points.

The “faces” of a k-simplex are the (k-1)-simplices formed from taking the same points as the
original simplex but removing one point. This means the faces of a 3-simplex or tetrahedron are
the 4 triangles that make up its surface area, the faces of a triangle are the 3 line segments the

perimeter is composed of, and the faces of a 1-simplex are the points at either end.

It is important to note that the order of the points listed in the simplex does matter, it defines



0-Simplex 1-Simplex 2-Simplex 3-Simplex

Figure 1.2: The first 4 types of simplices: a point, a line, a triangle, and a tetrahedron.

the orientation of the simplex. A simplex with the same points could represent the same simplex,
or the “negative” simplex, one with the opposite orientation. In particular, given an ordering of
the points in the simplex, any even permutation of the points will define a simplex with the same
orientation as the original, and any odd permutation will give a simplex with negative orientation.
The orientation is arbitrary but important to maintain for calculations of homology.

For example Figure 1.3 shows the tetrahedron represented by the simplicial complex o3 =
[0, 21,2, x3] We define the orientation of this simplex to be positive. Now consider a different

3

simplex on the same points given as 6% = |29, 70, 23, 71]. To get from the ordering of o3 to the

ordering of 63 by switching two elements at a time we can perform the following:

[x0, 21,22, 23]  switch 2 and 3
[x0, x1, 23, x2] switch 0 and 2
[x2,z1,23,20] switch 0 and 1

[I’Q, Zo, I3, xl]

Since this took 3 operations (an odd number) this is an odd permutation of the original ordering.

Thus 63 has a negative orientation.

Simplicial Complexes

A simplicial complex is a set of oriented simplices with two required properties. The first is that
a non-empty intersection of two simplices in the complex S must itself be a simplex in S, and the
second is that any face of a simplex in S must also be in S. Since our points are in R™ a simplicial

complex describes a subset of Euclidean space. We denote this region of space as |S| and call it



Figure 1.3: Example 3-Simplex

the “geometric realization of S”. The kind of region that can be described by a simplicial complex
is called a polytope or polyhedron.
We demonstrate the properties of a simplicial complex first with a true simplicial complex, and

then with two sets of simplices which fail to have the required properties.

X X
2 ° 4

Figure 1.4: Example Simplicial Complex. Orientation is indicated with arrows.

First consider the simplicial complex S; below. Figure 1.4 shows the geometric realization of

Sl if T = (0,0),1‘2 = (0, 1),.%'3 = (1,0),1‘4 = (1, 1).
St = {[w1, 2, w3], [w1, x2], [w2, 23], [w3, 21], [w3, 24, [21], [w2], 23], [24]}

Note that if we take the intersection of any two simplices, we get a simplex that is still in the set,
for example [z, x3] N [z3, 74] = [r3] € S1. Additionally any k-1 face of a k-simplex is also a simplex,

for example all three edges of the triangle [z, 22, 23] are also simplexes in S*.



Now consider:

5% = {[z1, 23], [x2, x3), [z1], [x3]}

Note that [x1, 23] N [x9, 23] = [x2] is not in S?; the set is not closed under intersection. Therefore
52 is not a simplicial complex.
Then consider:

S% = {[w1, w2, 3], [21, m2], [1], [w2], 3]}

Two faces of [21, 72, 23] are not in the set, [xo, 3] and [z3, 21] so S? is also not a simplicial complex.

If we have a Topological Space X that is homeomorphic to a polytope |S|, we say X is a
triangulated space and S is a triangulation of X. The triangulated space can have multiple different
triangulations, however the homology groups for any triangulation are the same as the homology
groups of X. Therefore finding the homology of some topological space can be reduced to calculating
the homology groups of a simplicial complex, which is something that can be done computationally
with well-studied algorithms. This is the foundation of most of computational topology [2]. However
it is important to note that many sets, certain fractals for example, cannot be triangulated by a

finite polytope.

1.1.3 Homology from Simplicial Complexes
Chain, Cycle, and Boundary Groups

We now discuss various groups which will lead us to the definition of a Homology Group. We
introduce a non-trivial but relatively simple simplicial complex that we will use throughout the
section as an example. We denote the complex as S so as to avoid confusion with a general
simplicial complex S. Figure 1.5 shows a geometric realization of S. Arrows on edges indicate the
orientation of the 1-simplices and circular arrows indicate the orientation of the 2-simplices.

Xo Xy Xg

S

X4 X3 X5 X6 X7

Figure 1.5: Example Simplicial Complex S



& _ 0.0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2
S_{ 01,092,03,04,05,0¢,07,08, 01,02,03,04,05,0¢4,07,0g, g1 }
where superscripts indicate the dimension of the simplex, subscripts are labels, and simplices are

defined as follows:

ol = [r1], o3 =[aa], 0f = [a3],

1 _ 1 _ 1 _ 1 _
0-1 - [.CU]_,SUQ], 02 - [332,1173], 0-3 - [CCg,.’El], 04 - [$3,$5],
o} = [w5, 6], 0§ = [w6,27), of = [w7, 28], 0f = [v8, 6]

0} = [x1, T2, 3]

One can verify that this set has the properties required to be a simplicial complex. Intuitively
we can see that there is one “hole” (the 2D kind, the 1st Betti number) in this complex since the
edges on points zg, x7 and xg make a loop. We can also see that despite the similar loop of points
on z1,re and x3 there is not a second hole here because the full triangle is filled in/there is a
2-simplex on those points as well as the edges. We need a way to differentiate these two loops to
ensure one counts as a hole while the other does not.

We denote the “k*P-chain group” of a simplicial complex S as Cj,. This is the free abelian group
(see appendix 4.1) with the collection of k-simplices from S as a basis. The inverses are then the
simplices with opposite orientation to the original set. A word in C} is a k-chain, a formal sum of

a finite number of oriented k-simplices. We generally denote a k-chain as

C — E a,-af
7

so we write the k* chain group of a simplicial complex S as
Crp={er=>) a0} | o} € S} (1.1)
i

We consider a; € Z but this definition can be extended to any abelian group like the reals.

As an example consider the group C; from our example complex S. The basis for this group is

{o},03,0, 0k, 0}, 0¢,0L,04}. Thus any 1-chain, a formal sum of “edges” of the complex is in C1,



we write for example:

O’% — 20’% = [1’2,3}3] — 2[%1,3?2]
- [1'2,373] - [xlaxQ] - [.7]1,.7]2]
= [wo, w3] + [w2, 21] + [w2,21] € C1

Arbitrary collections of simplices can be described as words in the chain group, for example the loop

that we have said intuitively forms a hole can be described as o} 4+ 0% + 04, and the loop around the
triangle as o1 + o1 + 3. However they could also be described as —of — ot — o} and —of — o3 —od.
Because we will be discussing them later we will define these 1-chains as: I} = o] + o4 + o3 and
ls :aé —i—a%—l—aé.

We then define the Boundary Operator, a function between chain groups. We say the boundary

operator 0 : Cy, — Ck_1 maps a k-simplex onto a sum of the (k-1)-simplices in its boundary. It is

the alternating sum of the simplex’s faces. We write the operator as:

k

Ok(0") = (=1)[20, +vrs &y oy 4] (1.2)

=0
where [z, ..., Z4, ..., 7x] is the (k-1)-simplex/face resulting from deleting the vertex x;. From our

example take the boundary operator of the only 2-simplex we have:
d2(07) = [w2, m3] — [x1, 23] + [21, 72]

= [x2, 23] + |23, 21] + [1, 2]

1 1 1

X2 X2
X2
W __»
82(&) - \ﬂ =
X1 X3 X3 .

Note that this sum of edges, o4 + O'% + o is the previously defined [;; the “loop” surrounding the
2-simplex.

Note three important properties of the boundary operator:
L k(X aiof) = 3, aidy(of)

7



2. 8k(8k+1(ck)) =0

3. 9o(c%) =0 for all zero-simplexes

Property 1 is linearity: the boundary operator is linear. Property 2 says that the boundary
of any boundary is zero. This is important in the following definitions of the cycle and boundary
groups and a proof can be seen in [3]. Property three is a convention, that the boundary operator
of a 0-simplex or single point is 0.

As an example supporting property (2), we take the boundary of the boundary of the 2 simplex

from before:
01(02(01)) = 01(l1) = D1(03 + 05 + o)
= 01 ([z2, z3] + [x3, 1] + [71, 22])
= 01([xe, z3]) + O1([x3, 1)) + O1([z1, 22]) (by linearity)
= ([ws] = [w2]) + ([z1] = [w3]) + ([z2] — [21])
= [w3] = [ws] + [w1] — [21] + [w2] — [22]
=0
Now we define the k' cycle group Zj to be
Z = {cx € Cy | D(c) = 0. (1.3)

This is a subgroup of C}; it is the group consisting of k-chains that map to zero under the boundary
operator. In other words it is the kernel of 0;. Any k-chains in this set are called k-cycles.

We look at some examples from Z; of S. We showed previously that the chain o)+ 0% + o}
is in the kernel of 0;. Additionally the other “loop” mentioned before, 0(1)- + ol + aé can easily be
shown to have 0 boundary. Therefore both [y and Iy are in Z;. For 1-simplices this group consists
essentially of the loops on the edges in the complex.

The cycle group has allowed us to identify the loops in our example complex S, but as mentioned
there is a topological difference between the right and left loops, the left is filled in with a 2-simplex
and thus not a “hole” while the left loop is empty. To distinguish these we introduce By, the k™
boundary group. This is the group of k-chains which bound a k+1 chain, i.e. the image of O 1.

Formally this becomes

B ={ ¢k € Ck | Ogs1(ckr1) = g for some i1 € Cryq } (1.4)



Note that by property (2) every boundary is a cycle so we can say that:
By C Zy, C Cy

For our two 1-cycles or loops (the left loop: 1 = o1 + 04 + 03 and the right loop: Iy = o} + ot + o)
we can then distinguish the two, as [; will be in By as the boundary of a 2-simplex but [y will not
as there is no simplex in Cs, no triangle, which has this cycle as a boundary.

In summary, we have described 3 groups built from a general simplicial complex S for each
dimension k:

C) = the k' chain group: the free group with the k-simplices in S as the generating set.
Elements are called k-chains.

Zi, = the k™ cycle group: the subgroup of C, consisting of only k-chains with zero boundary.
Elements are called k-cycles.

Bj; = the k" boundary group: the subgroup of Z;, consisting of only k-cycles that are also the
boundary of some (k+1)-chain. Elements are boundaries or boundary-cycles.

We see from our example that the boundary group gives us the difference between cycles that

bound holes and cycles that are “filled in”.

The Homology Groups and Betti Numbers

We can now define Hy, the k' Homology group. It is the quotient group of Zj, and By, we write
Hy = 7/ Byg. (1.5)

Elements of the group are equivalence classes of k-cycles that do not bound any k+1 chain. Two
k-cycles z,i, 2,3 € Z), are in the same equivalence class if z,i — z,% € Br. We denote the equivalence
class that contains zj as [zg].

This implies that any cycle that is itself in the boundary group is in the equivalence class with
the 0 element. Therefore our filled in loop /; in a way “vanishes” in the homology group: [0] = [l1].
However, I3 does not as it does not belong to Bi. So I; and Iy are fundamentally different in the
Homology Group. We briefly noted earlier that both lo and —Io can equivalently describe the right
loop. We see then that lo — I3 = 0 € By so both are in the same equivalence class that corresponds

to a single loop around the hole. 2ly; will be in a different equivalence class and for our simple



example we can show that we will have:
Hy = {[0]} U{ [nl2] | n € Z"}
We also now formally define the k' Betti number as
B = rank(Hy,) (1.6)

This gives us what we wanted from the beginning, a way to say how many k-dimensional holes an
object has, at least for simplicial complexes. Then if a topological space can be triangulated by
some simplicial complex, we can define the Betti number of the space as the Betti number of the
triangulation, as the homology groups are the same.

The rank of H; for S is 1, for our example complex S. This is the 15 Betti number of S. We

could do similar analysis to show that:

Hy = {[0]} U{ [na?—i—mag] | n,meZ"}

Every 0-simplex will be in Zy because of property 3 of the boundary operator, all points have
zero boundary. Then points which are in the same connected component, or equivalently are the
boundary of some 1-chain, will be put in the same equivalence class. Essentially every 0-simplex
that is in the large connected component will be put in the same equivalence class as o9, and o)
will have its own equivalence class, and then any integer combination of these two classes will be
their own class in the homology group, giving this Homology group rank= 2. This is what we would
expect, as the complex has two disconnected components.

Thus this simplicial complex has fy = 2 and $; = 1. Any higher Betti numbers are zero, as the
homology groups are trivial in R? for k > 3

This general theory allows us to find the Betti numbers for arbitrary simplicial complexes by
finding homology groups and identifying their ranks. However for any complex larger than our
example, this computation would be extremely long and complicated. In the next section we show

how the rank of homology groups can be identified computationally using known matrix algorithms.

10
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1 -1 0 0 0 0 0 0 a9
o 1 -1 -1 0 0 0 O ol
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o 0 0 o 1 -1 o0 1 ol
o 0 o0 o0 0 1 -1 0 oY
(0 0 0 0 0 0 1 -1 o3
ol o0y o3 0y 05 05 07 O}
Dj =

Figure 1.6: Boundary Matrices of S. Note the transpose on Ds.
1.2 Computing Topology

1.2.1 Computing Betti Numbers: Smith Normal Form

We introduced simplicial homology with the motivation that we can use algorithms to find ho-
mology groups and Betti numbers. Therefore we show that we can reduce the computation of
homology groups and Betti numbers to linear algebra and matricies, which is easily implemented
computationally.

We represent our boundary operators dy : C, — Ci_1 as matricies Dy. Using the notation of
[4] if our complex S has my k-simplices and my_; (k-1)-simplices in it, then Dy is an myg_1 X my
matrix. Since the boundary of each k-simplex is a sum of (k-1) simpicies, the entry [Dy]; ; is 1 if
the i (k-1)-simplex is in the boundary of the j* k-simplex and 0 if it is not.

In Figure 1.6 we show the boundary matrices from our example S. As an example, we see that

01(03) = o) — 09 so entry (3,2) is 1 and (2,2) is -1, the respective coefficients in the boundary sum.

11



The Boundary Matrices Dy and Dy completely characterize the homology group Hj, and
computing the Smith Normal Form of these matrices tells us all we wish to know. The Smith
Normal Form, originally described in [5], is found essentially by performing Gaussian Elimination,
except we want to maintain integer entries of the matrix, so no division is allowed. We then reduce

Dy, to D}C in the block matrix form below.

D = By 0

0 0
By is an [ x [ diagonal matrix with [ < myj and non-zero diagonal entries. The rank of
the cycle group Zj is my, — lj; or the number of zero columns in the matrix Dj. The rank of the
Boundary group is the rank of matrix Dy or the number of non-zero columns in Dj, 41 which is
lx11. The rank of a quotient group is the rank of the original group minus the rank of the subgroup

so we have

B = rank(Hy) = rank(Zy) — rank(By) = my — lp — lp41. (1.7)

The diagonal entries of By, if greater than 1, give us the torsion coefficients of the homology
group Hj. However in cases where we are not interested in torsion coefficients, we can simply
perform Gaussian Elimination on Dy, instead of computing the Smith Normal Form. This will give
us the same number of non-zero diagonal elements. This is advantageous because requiring integer
elements of the matrix often results in extremely large numbers during the calculation which can

cause computational issues.

1.2.2 Simplicial Complexes from Finite Data

Since in most contexts we are only given a discrete set of points to approximate a topological
space, we wish to construct a simplicial complex from the set of points which approximates the
underlying space. There are many ways to do this, but we show two of the most straight-forward
ways to construct the complex. Generally we have some parameter e that represents the scale at
which we are looking at our data. To be more precise we wish to approximate the e-neighborhood of
the original topological space with the e-neighborhood of our points, as this takes into account the
discrete nature of our point sample. Figure 1.7 illustrates generally what we wish to accomplish.
For simplicity we restrict our discussion to R™ with the Lo metric but the complexes can be defined

using different metrics.
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Figure 1.7: We have a sample of points from a topological space, and wish to construct a simplicial

complex that approximates the space.

Cech Complex

All of our complexes will begin with all of the points in the data set which approximates our
topological space as 0-simplexes. Then we will add higher-order simplices based on some closeness
condition on sets of points.

Informally the Cech Complex grows n-dimensional balls around each simplex in Euclidean space
R™ and when the balls overlap, the simplex composed of the points at the center of each sphere is
added to the complex. A more formal description follows, see [6] for more details.

Given our data set of N points D = {z;})¥;, C R™ and a parameter ¢ we construct a simplicial
complex C(e), called the Cech complex. Define B;(€) as the closed ball of radius e centered at
point x; for i = 1,2,3,..., N. For any set of k + 1 < N points {m(j)}?ill C D the k-simplex

ok = [Z(1), ©(2), s T(hg1y] 18 in C(e) if and only if

m B(J)(E) 75 @ (1.8)

Figure 1.8 Illustrates the process of creating the Cech Complex. This complex is desirable as the
simplicial complex is guaranteed to have the same homology as the union of e-balls used in its

definition, equivalently the e-neighborhood of the point set, due to the nerve theorem, see [4].

Vietoris-Rips complex

The Vietoris-Rips or Rips complex is very similar to the Cech Complex, but instead of looking for
overlapping balls we simply measure the distance between each pair of points and add a simplex

when all pairwise points are within a distance € of each other.
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Figure 1.8: Building a Cech Complex: The first frame shows the original data set. The second
shows the balls of radius € centered at each point. Then for each set of balls with a non-empty
intersection we add a simplex in the third frame. The final frame shows the resulting simplicial

complex.

More formally, given a data set D = {xl}f\;l C R™ and a parameter € we construct the Rips
complex R(e). Instead of considering the intersection of balls we simply say that for any set of

k+1 < N points {a:(j)}?ill C D the k-simplex 0" = [x1), (), ..., #(+1)] is in R(e) if and only if
d(z@y,x)) <e foralli,je{1,2,3, .. k+1} (1.9)

This requirement is only subtly different from the Cech Complex. When comparing the Cech and
Vietoris-Rips complexes we often consider the € of the Cech complex to be half that of the Vietoris-
Rips Complex, because two points which connect as a 1-simplex in the Cech Complex at e; will
connect at 2¢; in the Vietoris-Rips Complex on the same set of points.

In fact in [7] it has been shown that we can bound the Cech complex using the following lemma.
Lemma: For any e > 0 we have that R(e) C C(ev/2) C R(ev/2)

It is however possible to have a set of points that are pair-wise within a distance € of each other
despite having no intersection of the balls of radius €/2 centered at each one. An example is shown
in Figure 1.9. The Cech complex has better guarantees on accurate topology, see [8], however the

Rips complex is much less computationally expensive and still gives good results.

Alpha Complex

The alpha complex has many computational advantages over the Cech and Rips complex especially

for point sets in R? and R3. See [9] for a summary and [10] for algorithms in the 3D case. Essentially
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Figure 1.9: Cech complex vs Vietoris-Rips complex on the same 3 points. Note the 2-simplex

(triangle) filled in on the left but not the right, and the lack of a 3-way intersetion of balls on the
left.

the alpha complex uses the same concept of e-balls as the Cech complex, but takes their union with
the Voronoi cells of the point at their center. The Voronoi cell of point x; is the region of space in
which the distance to the point z; is less than the distance to any other point in the data set. If
V; is the Voronoi cell of point x; then the definition is nearly the same as the Cech complex but
condition (1.8) for a simplex to be in the alpha complex A(e) becomes

k+1

() By)(e)uV; #0 (1.10)
j=1

Assuming general position of the data points, this guarantees that the complex will never have
a simplex of dimension greater than the space in which the points are embedded, and will have
fewer k-simplices than the Cech complex even for k less than the dimension. In fact A(e) C C(e),
but still gives the topology of the e-neighborhood of the points.

There are many other ways to construct simplicial complexes from finite data sets, see [11]
for a description of the witness complex, or [12] for a description of cubical complexes which
use “elementary cubes” as the basis for homology rather than simplices. Some more complicated
constructions down-sample the data by not using all of the data points in the original 0-simplex set,
which can be very advantageous for computation. These three examples, the Cech, Rips, and alpha
complexes however give a good intuition as to how complexes are constructed using some closeness
parameter, generally called €. Considering how the simpical complex changes as a function of this

parameter leads us to the notion of persistence discussed in the following section.
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1.3 Persistent Homology

1.3.1 Filtrations and Persistence

Now for any type of simplicial complex we define with a distance parameter €, we can imagine
“erowing” the complex as we let € range from 0 to infinity. We begin to think of this parameter
as a sort of time variable. Observing the way the homology of the complexes change over time
can give us an idea of which holes are important and which can be considered noise. Persistent
homology is developed in [13] and [4].

Given a simplicial complex K, which for our purposes we assume to be finite, we assign each
simplex a “birth time”. This can be thought of as a function from K into the reals b : K — R
where for a simplex ¢ in the complex we have a birth-time b(c). We require that if o; is a face of

o9 then b(o1) < b(og). This requirement ensures that the set
K(e) ={o € K|b(o) <€} (1.11)

is itself a simplicial complex. This can also be thought of as the preimage of the interval (—oo, €],
in other words K(e) = b~!((—00,€]). Because of our assumption that K is finite we know there
is a minimum and a maximum birthtime. Therefore for any € which is lower than the minimum
birth-time we know that K (e€) is the empty set and for any e which is greater than or equal to the
maximum birth-time that K(e¢) is K. With a finite, discrete set of birth-times we also know that
there are a finite and discrete number of unique complexes, and they are all sub-complexes of K.

We can then index them so that we have the following.
)=KoCK CKyC..CK, 1CK,=K (1.12)

This set of simplicial complexes {K;}7 , each a sub-complex of the next, is called a filtration.
As discussed before we can calculate the Betti number of each one of these simplicial complexes
individually. However, if we consider the way in which the complexes grow, we can glean more
information than simply just how many holes exist at each step. Holes are born and die at different
times/ € values, and we can take into account those that persist for longer intervals in the filtration.

Each complex K; will have homology groups H,(K;) which contain equivalence classes corre-
sponding to the p-dimensional holes of each complex. For 0 <14 < j < n we have that K; C K; and

thus we also have an inclusion map between the spaces. This gives us the induced homomorphisms
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fh H,(K;) — Hp(Kj) for each dimension p. These homomorphisms map the equivalence classes
representing holes in K; to equivalence classes representing holes in K; so that we can identify holes
that exist in both subcomplexes. We define the image of these homomorphisms to be the persistent

homology groups, H;’j =im f;’j and the ranks of these groups are the persistent Betti numbers,
B! = rank(H,7). (1.13)

The persistent Betti numbers are distinct but related to the standard Betti numbers. §,(K;) and
Bp(K;) are the number of p-dimensional holes in the complexes K; and K respectively. B;,’j Is
the number of p-dimensional holes that exist in both K; and K;. Therefore the persistent Betti
number must be less than or equal to both of the standard Betti numbers.

The complexes we have discussed, Rips, Alpha, Cech, as well any other complex defined similarly
using a distance parameter effectively defines the birth time function . The birth time for any
simplex in one of these complexes is the minimum epsilon at which the complex contains the
simplex. For example, the birth-time of an edge in the Rips complex is the distance between the
two points.

The full complex K for the Rips complex is the complete complex on the set of points that we
begin from. If our point set has m points, K = lim._,o, R(€) is an m-simplex with every one of its
faces, and their faces, and so on. Once € is greater than the diameter of the point-set, every edge
will be connected and therefore every possible triangle, tetrahedron, and so on. The same is true
for the Cech complex, the only difference is in intermediate filtration values.

The full complex K for the alpha-complex is the Delaunay Triangulation of the point set. This
has far fewer simplexes than the full m-simplex of the m points, and assuming general position of
the points will never give a simplex of dimension higher than that of the embedding space. This is
highly advantageous for computations, as persistent homology algorithms scale poorly with number

of simplexes.

1.3.2 Visualizing Persistence

Being able to visualize how the homology of a filtration changes is important, especially for non-
trivial examples with complex topology. To illustrate some of the ways to visualize the persistent

homology of a simplicial complex built from a point set we introduce the example in Figure 1.10.
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Figure 1.10: We have a sample of 75 points from annulus and wish to analyze the topology

Intuitively we can see these points have been sampled from an annulus. We would expect an
annulus to have 1 component and 1 hole. Figure 1.11 shows the balls of various radii growing

around each point.

Figure 1.11: We grow balls of epsilon around each point. The collection of these balls will have the

same homology as the Cech complex, approximated closely by the Rips Complex.

We calculate a filtration using the Rips Complex on these points. Thus when our filtration
parameter is zero, we will have a large number of disconnected components (in our case 75). Then
as the parameter grows, more and more components will become connected, until eventually we
expect a single connected component. As for the number of holes, initially with distinct points
we expect to have no holes at all. Then as the components connect we expect some holes to form
but then die quickly due to the noisiness of the data. Then at some point we would expect all
holes to fill in except the large one in the middle. This large hole once it is born should last a

long time compared to the other smaller, noisier holes at the beginning of the filtration. We use
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Persistence Diagrams and Barcodes to visualize the exact calculated persistent homology to connect
our intuition with quantitative results.
Barcodes
Barcodes, see [7], are perhaps the most intuitive way to visualize persistence. Throughout the
filtration, topological features will be born and die, and a barcode plots an interval for each topo-

logical feature, beginning at the birth time of the feature and dying at the death time. Figure 1.12

shows the 0 and 1 dimensional Barcodes of our annulus data. These were created using Javaplex,

see [14].

Dim 1
|

Dim 0
i \HHHHHHH

0.5 0.6

0.3 0.4

0.2 0.3

o
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Figure 1.12: Barcodes from the Rips Complex constructed from the annulus-sampled point set

In the O-dimensional barcode, there are 75 lines, each beginning at 0. These each correspond to
one of the points in our original point-set. then as epsilon grows, edges form and components begin
to combine, so some of the intervals end as they are absorbed into other components. By about

€ = 0.2 all of the components have combined into one single large component. This final large
component lasts the entirety of the filtration. This supports our intuition as well as our hypothesis

Between 0.1 and 0.2 some holes

that the points come from a single annulus.
In the 1-dimensional barcode, there are initially no holes.
form but generally die shortly after forming. These short intervals correspond to our supposed
“noisy” holes. Then after 0.2 only one of the holes lasts, but it lasts the rest of the filtration. (At
least past € = 0.6. It eventually also closes.) This corresponds to the large hole in the middle of

the annulus. Its long interval quantitatively supports this hole belongs to the “true” underlying

topological space.
Given the set of barcode intervals, we can easily compute Betti numbers and persistent Betti
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numbers. The pth Betti number of the complex (,(K (€)) is the number of intervals that intersect
with a vertical line at e. The persistent Betti number ﬁ;,"e(K ) is the number of intervals that
intersect with both a vertical line at A as well as a vertical line at e. These topological features

“persist” throughout the interval. [7]

Persistence Diagrams

Persistence Diagrams, see [15], encode the same information as the Barcodes but slightly differently.
Each topological feature is represented as a point in the plane, with x coordinate as the birth time
and y coordinate as the death time. Features that persist beyond the end of the filtration are
represented as triangles along the final filtration value. Figure 1.13 shows the Persistence diagrams

for our example data.
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Figure 1.13: Persistence Diagrams from the Rips Complex constructed from the annulus-sampled

point set

Of course a feature’s death time must always come after its birth, so all points will be above the
line y = x. The length of an interval in the barcode corresponds to the closeness of a point to this
line. We can see that in both the 0 and 1 dimensional persistence diagrams there are many features
that are close to this line, and a single feature that exists far from the diagonal, corresponding to
the singular connected component and hole in the underlying annulus.

Betti numbers and persistent Betti numbers can also be calculated from a persistence diagram.
The persistent Betti number BS’E(K ) is the number of points which exist above and to the left

of a point (A, €). This naturally gives rise to a “persistent rank function” which is a function of
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two variables which returns the persistent Betti number. This rank function has proved useful
for defining statistics to compare filtrations [16]. The classical Betti number is the rank function

exactly on the diagonal.

1.4 Fractals and Symmetry

1.4.1 Scaling Properties and Homology of Fractals

Persistent homology can provide powerful computational results for finding the topological features
of simple spaces approximated by point sets. But many topological spaces have features that are
not so easily deduced from data. In particular, fractal sets will have topological features that are
much less intuitive. Consider the Sierpinski gasket in Figure 1.14, which will be discussed in detail

later.

N

n B,

S, bh
b B B B,

Figure 1.14: The Sierpinski Gasket

What are the Betti numbers of the Sierpinski gasket? This question is much more difficult
to answer than for an annulus. It can be shown that the gasket is indeed a single connected
component, so fp = 1. However, the number of holes the object has is infinite, no matter how close
you look, there will be another hole by definition. The 1st Betti number for this fractal is therefore
not well-defined.

In order to gain useful information about fractal sets from finite data, we draw inspiration from

the box-counting or Minkowski dimension. The box-counting dimension is defined as

dim(S) = lim 1280V(9)

e—0 log(1/e) (1.14)

where N(e) is the number of boxes of side-length € required to cover the set. In the case where

this limit does not exist we replace the limit with the limsup. This is derived from the assumption
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that there is power-law scaling N(1/n) o« n? for manifolds, see [17]. The growth rate d is always
an integer for manifolds, but with fractal sets we often find non-integer dimensions.
In [18], Robins defines the “disconnectedness index” or vy analogously to the box-counting
dimension as
log(C(e) _ . log(By“(S))

70(8) =l S~ M Tog(ie (1.15)

with the function C(€) being the number of components that the e neighborhood of a fractal has.
Persistent Betti 6876(5) is the number of 0-dimensional holes that exist in the fractal and persist
into the € neighborhood of the set S. Our definition of persistent betti numbers assumed a simplicial
complex and filtration, but they can be defined over € neighborhoods just as we defined them over
a filtration.

This index can be similarly defined for any arbitrary dimension, which only slightly changes the
formula. For B? “(S) being the number of persistent i-dimensional holes in the e-neighborhood of a

set S, we define

Q) — 1 108(87(5))
7i(S) = lao log(1/€)

(1.16)
to be the ith persistent Betti growth rate. Robins calls the growth rate for i = 1 the “loopiness”
index, as it measures how the loops or holes scale within the fractal. The index for ¢ = 2 she calls
the “holiness” index as it measures how the number of bubble-like voids a fractal has scales with
€, reminiscent of holey swiss-cheese.[4]

It is important that the indices are defined using persistent Betti numbers, because it is possible
that short-lived holes form and disappear as ¢ grows. We only want to count holes in the €
neighborhoods of the fractals that correspond to holes in the fractal itself.

This is only analytically computable in idealized situations. In practice, as with the box count-
ing dimension we wish to be able to calculate approximate growth rates from approximations of
the fractal. This is where persistent homology becomes useful. Using a finite point-set which ap-
proximates our fractal we create a filtration such as the Rips or Alpha complex which is well suited
for approximating the homology of a set’s € neighborhood. We calculate a value p, our cutoff value,

which is the minimum value that we believe our filtration reasonably approximates the fractal’s e

neighborhood. p depends on the noisiness and density of our point-set. We can then compute the
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approximate growth-rate as

+4(S) ~ lim 12BBI(5)

o (1)) (1.17)

using the persistent betti numbers of the filtration. This is the method we use to analyze our

fractals in the following sections, see [4] for examples in 2D.
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1.4.2 The Sierpinski gasket and its relatives

The Sierpinski gasket is a classical example of a 2D fractal, often used to introduce the idea of
self-similarity [19]. The intuitive way to imagine forming the Sierpinski gasket is to begin with a
unit square, divide it into 4 equal quarters, remove the top right quadrant, shrink the resulting
shape uniformly by a factor of two, and replace the 3 remaining quarters with the smaller version
of the whole. Repeating the shrinking and replacing over and over again limits to the Sierpinski
gasket. It is easy to see the self-similar structure of this set: one third of the overall shape is exactly

similar to the entirety of the fractal.

Db
ShEh

Figure 1.15: Creating the Sierpinski gasket iteratively

The Sierpinski relatives are a class of fractals created similarly to the Sierpinski gasket, however
at the “shrinking” step we introduce an additional rotation/flip for each of the 3 non-empty quad-
rants. Figure 1.16 shows some examples. Each rotation/flip is an element of the symmetry group
of the square which has 8 elements. The symmetry group of the square is discussed in appendix
4.2. With 3 squares there are 8% = 512 ways to choose the symmetries, but excluding identical or

reflected fractals there are 232 unique fractals.
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Figure 1.16: Some examples of forming Sierpinski relatives

FREERER

A second way to describe the Sierpinski gasket and its relatives is with an Iterated Function
System or IFS. An IFS, in general, is a finite set of contraction mappings on a complete metric
space. The contraction mapping theorem shows that in a complete metric space an IFS has a

unique, non-empty fixed set S, see [19]. This gives us a more mathematical way of describing the
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Sierpinski relatives. For the original gasket we have the following 3 contraction mappings from R?

to R2:

1/2
fo(@) = 57+
0
0
fg(f) = -+
1/2

The Serpinski gasket is then the unique fixed set S C R? such that
S =UL1fi(S) = fi(S) U fa(S) U f3(S) (1.18)

Each Serpinski Relative can be described by equation (1.18) as the attractor of an Iterated Function
System consisting of 3 affine contraction mappings but with different functions f;.

10 points 100 points 1000 points 10000 points

B,

ey

2N

Figure 1.17: Approximating the Sierpinski gasket with the Chaos Game

The IFS description of fractals gives us a powerful way to computationally approximate the
attracting set. Often called the “chaos game” we begin by choosing a random point in the unit
square xo. We then iterate this point to find x;11 = f;(x) where f; is a randomly chosen contraction
mapping from the Function System. For our purposes we choose a random function uniformly and
iid, but it is common to assign different probabilities for each mapping. If the initial point zg is in
the fixed set of the IF'S, the iterates will stay within and fill in the fixed set. This creates a dynamical
map with the fixed set of the IFS as an attractor, see [20]. Implementing this computationally,

we find the orbit of a randomly chosen point and by ignoring the first few iterates we obtain a
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point-cloud approximation of the attractor. The more iterates we take, the more densely we fill the
attractor, allowing us to balance precision and computational efficiency when we wish to analyze
the properties of these sets.

1 1

Figure 1.18: Some Sierpinski relatives created with 20000 points and the chaos game
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Chapter 2
3D Sierpinski relatives and Analysis

2.1 3D extension of the Sierpinski relatives

We wish to create a set of 3D fractals analogous to the Sierpinski relatives. Instead of beginning
with the 2D unit square we generate our fractals by subdividing the unit cube into 8 smaller cubes.
It is not obvious which of the 8 cubes, and how many, we should remove in 3 dimensions so to
be as general as possible we allow our set of fractals to include any choice of the 8 sub-cubes to
be removed. After we remove n cubes with 0 < n < 8, the analogy continues. Just as in the 2D
case we shrink our new shape by a factor of 2, and replicate it in each of the 8 — n remaining
subcubes. Each of these 8 — n cubes will be rotated, flipped, and/or inverted in some way at each
iteration. Repeating this shrinking, rotating, and replicating process gives us a class of fractals
which intuitively extend the Sierpinski relatives into 3D.

The choice of flipping/rotating/inverting for each sub-cube is associated with one of the elements
of the symmetry group of the cube, just as the Sierpinski relatives were associated with elements
of the symmetry group of the square. The cube is “dual” to the octahedron, so the symmetry
group of the cube is referred to as the octahedral symmetry group, which has 48 elements including
symmetries that are not oreintation-preserving. See appendix 4.2.

We introduce a reference cube with labeled verticies for convenience in Figure 2.1. Each sub-
cube/eighth will be referred to by the numbers on the vertex incident to the cube. We assume
point 3 is at the origin, point 1 is at (0,0,1), and point 4 is at (1,0,0).

As an example of a fractal from this set, Figure 2.2 shows the first few iterations and attracting
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4
Figure 2.1: Reference cube, 3 is the origin, 1 is on the z axis, 4 is on the x axis

set of a particular fractal. We remove cubes 2, 5, 6, and 8. We color cube 1 green, 3 red, 4 yellow,
and 7 blue. We shrink this shape down, and replicate it in each sub square. In analogy to the
Serpinski gasket we choose our symmetries as the identity. This gives us a 3D Serpinski gasket

with 2D gaskets on each plane.

Figure 2.2: 3D fractal (0,—1,0,0,—1,—1,0,—1), iterations and attractor

We would like to know how many unique fractals are in this set. There are 8 initial cubes to
choose from. Each one can be either chosen as empty, or if non-empty can be associated with any
of the 48 elements of the octahedral symmetry group. There are thus 49 choices for each of the
8 cubes so we have 49% — 1 = 33,232,930, 569, 600 or over 33 trillion possible attractors. 1 must
be subtracted to avoid counting the “empty” fractal where we choose all cubes to be removed.

This leads us to a notation to specify any attractor in our set. We specify a fractal from our set
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using an 8-tuple with elements from the set {—1,0,1,2,3,...,47}. If the 1st number in the tuple
is -1, then sub-cube 1 is removed, otherwise the number refers to which symmetry group element
sub-cube 1 is associated with for iteration. Thus each number in the tuple indicates what we do
to each corresponding sub-cube, whether it be to remove, rotate, flip, and/or invert. Our previous
example would thus be indicated as fractal (0,—1,0,0,—1,—1,0,—1) as dy is the identity element
of the octahedral symmetry group.

Of course, similar to the 2D case there will be many identical attractors within this set, and
many that only differ by a rotation. Since the attractor itself can be rotated in any of the 48
ways associated with the cube and another distinct combination of symmetries can be chosen to
create this rotated attractor we can immediately divide this number by 48, so there are less than
(498 — 1) /48 = 692, 352, 720, 200 unique attractors, up to symmetry.

There are other repeat attractors in our set, even eliminating these rotational duplicates. A
full analysis of how many there are is out of the scope of this thesis, but would be an interesting
problem likely involving group theory and combinatorics. There are also attractors that are not
fractal, for example any choice where no sub-cube is chosen to be removed gives an attractor that is
the entire cube. Any choice where all but one sub-cube is removed gives a single fixed point. Even
eliminating repeats and “boring” attractors leaves us with an overwhelming number of possibilities,
and thus a full analysis of the topology and properties of the elements our new set of 3D fractals
is not currently feasible. Thus we perform whatever general analysis we can and then search for
interesting fractals among the sea of possibilities which will give us an idea of the types of interesting

shapes we can find.

2.1.1 Fractal Dimension

We investigate the box-counting dimension of the Sierpinski relatives as defined in equation (1.14).
Thinking of the way we iterated smaller and smaller squares to create the 2D Sierpinski relatives
gives us an easy manner of calculating their box-counting Dimensions. At the first step we cover
our fractal with 3 squares, each of side length 1/2. Thus N(1/2) = 3. At each consecutive step, the
three previous squares become 3 more squares each having side length 1/2 of the previous step’s
length. Thus we can say at step k that N(1/2) = 3*. Epsilon goes to zero as k goes to infinity so

we calculate
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dim(8) = lim 2BWV(Q) _ p  1o(3") _ log(3)

= = ~ 1.58496.
e—0 log(1/e) e log(2F)  log(2)

The analogy to 3D can be used in the same way for the 3D Sierpinski relatives. Say we remove
8 — m sub-cubes out of 8, leaving us with m sub-cubes. Then at step one, the side length of each
cube is 1/2, and we need m cubes to cover the attractor. At each next step the side length of the
cube is halved as before, and each of the cubes will result in m more than the previous step. Thus

for m sub-cubes at step k we have that N(1/2F) = m¥. Then we have

| log(N(e)) . log(m*) _log(m)
m(S) = lim 2 m/g ~ A Toe@) ~ Tog@) (21)
The table in Figure 2.3 shows the Box counting dimension for m = 1,2, ...8. There are interesting

implications of these numbers. We discuss each m along-side examples in the following section.

2.1.2 Subsets

It is interesting to examine each subset of our set of attractors formed by keeping m sub-cubes
separately. We discuss briefly the various cases of m alongside a selection of 4 attractors from each
subset. The color of each point in the figures is determined by its physical location in space to help
visualize in 3D; the RBG color value is exactly the x, y, z coordinate in space.

The following table summarizes the different subsets. The “number” column lists how many
possible attractors there are in this subset. Keep in mind this is out of the ~ 33 trillion fractals. This
is calculated as (Ti) 48™ . as we need to choose m cubes to keep, and then a symmetry operation for
each of the m cubes. Dividing these numbers by 48 to eliminate symmetrically-equivalent attractors
gives a tighter bound on the number of truly unique attractors, but the percentages will remain
the same and thus give a better idea of the magnitude of these subsets.

As previously mentioned, the attractor for any IFS with a single contraction mapping will be a
fixed point, so it is clear that the dimension when m = 1 is zero. See figure 2.4. There are 384 of
these fixed point attractors. This is about 1.155 % 10~ percent of the 33 trillion total attractors, a
very small amount of the total. In fact nearly all of the attractors will be in the also trivial m = 8
case discussed later.

For m = 2 the dimension is exactly 1, see figure 2.5. We do find attractors that are simply

lines in 3d space, but interestingly there are a wide variety of shapes and patterns that emerge in
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m | dim,,(S) number | &~ percentage
110 384 | 1.1554 % 1079
2|1 64,512 | 1.9412 %1077
3 | 1.58496 6,193,152 | 0.000018635
4|2 371,589,120 | 0.0011181

5 | 2.32193 14,269,022,208 | 0.042936

6 | 2.58496 342,456,532,992 | 1.0304

7 | 2.80735 4,696,546,738,176 | 14.132

8 |3 28,179,280,429,056 | 84.793

Figure 2.3: box-counting dimensions for a 3D Sierpinski Relative Fractal from m sub-cubes,

how many of the fractals are in each subset

(1-1-1-1-1-1 6-1) (11110 1 -1 -1 -1) (1 -1-1-1-1-120-1) (1-1-1-1-1-1-147)
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0.6 06 06 06
0.4 0.4 0.4 0.4

0.2 02| N 02 | 02 |

Figure 2.4: 3D Sierpinski relatives with 1 cube

and

this case, despite the integer fractal dimension. These fractals are great examples to show us that

integer box-counting dimension does not necessarily imply a non-fractal set.

(10-1-1-1-1 0-1) (1-143 411127 -1) (1-143-1-124-1-1) (1-1-133-1-1-145)
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Figure 2.5: 3D Sierpinski relatives with 2 cubes

Figure 2.6 shows examples when m = 3. The dimension is exactly the same as the 2D relatives,

despite being embedded in 3D space. In fact we can find fractals in this set that are simply the
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2D relatives on any of the faces of the unit cube. Yet despite being less than 2 dimensional, these

fractals also have a wide range of shapes and patterns.

©-100-1-1-1-1) @-1-1-1-123-124) (24 -1-1-1-1-1115) (127 1937 -1 -1 -1 -1)
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00 0o 0 o 0 o

Figure 2.6: 3D Sierpinski relatives with 3 cubes

For m = 4 the dimension is exactly 2. As with m = 2 this case shows us that there can be
complex fractal shapes that have integer box-counting dimension, see figure 2.7.

(10 -1 39 11 -1 -1 26 -1) (13 -1 128 310 -1 -1) (-1 -1 17 40 17 -1 42 -1) (1 333-113-1-114)

0.8
0.6
0.4

0.2

Figure 2.7: 3D Sierpinski relatives with 4 cubes

For m = 5,6,7 with examples shown in figure 2.8 the dimensions are increasing between 2
and 3. As could be expected, the fractals become more and more “dense” in visualizations as the
dimension increases, closer to filling a region of 3D space. When m = 7, only one cube is removed
of the 8 and we find interesting sponge-like structures.

For m = 8 nothing is removed so the attractor becomes the entire cube, no matter which
symmetries are assigned to each sub-cube. Plots of these attractors are omitted. Making up almost
85% of the total number of attractors, this is a very large and boring subset. It is interesting to
note that if we eliminate these attractors from consideration, as well as any symmetric attractors,

we have only 105,284,377,928 remaining attractors, a slightly more manageable amount.
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Figure 2.8: 3D Sierpinski relatives with 5, 6, and 7 cubes

2.1.3 Sierpinski Tetrahedron

The Sierpinski Tetrahedron, or fractal (-1, 0, 0, -1, 0, -1, -1, 0), is shown in Figure 2.9. This Fractal
has been studied previously, and due to its symmetry allows us to calculate exact values of the
Betti growth rates.

Since it is constructed by leaving 4 of the 8 sub-cubes, the fractal dimension of this set is 2. Like
the 2D Sierpinski gasket, this set is fully connected, therefore we know it has a disconnectedness
index of 0.

The most interesting value for this fractal is the “loopiness” index or ;. Because we know
the set is connected, we know that each of the largest triangular holes on the faces exist in the
true fractal’s topology. Thus we know that there will be an ¢ neighborhood of the fractal that is
homeomorphic to the second cubical iteration shown in figure 2.10, and more importantly that any
holes in this cubical complex correspond to true holes that exist in the fractal set. This is important

because we know that not only is the Betti number of the epsilon neighborhood the same as the
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Figure 2.9: The Sierpinski Tetrahedron

Betti number of the cubical complex, but also that their respective persistent Betti numbers are
the same. This logic holds for each smaller triangular hole, so we can calculate the true +; index
of the fractal in a similar fashion to the box counting dimension if we know [ of each iterative
cubical complex.

The first iteration, which has only the main triangular holes exposed, can be shown to be
homeomorphic to a solid torus with three holes, thus having 8, = 3. We conjecture that at each
iteration, these three holes remain, but each of the 4 subcubes gives rise to 3 new smaller holes.

Thus for € = ()" we have that 8y =337 ; 4°~1 = 4" — 1. We then calculate the growth factor:

] O€ log (4" — 1
7 = lim Og(51 )_ . og( ):2

0 log (1/e) 0o log (27)

Using “Perseus”, a persitent homology program [21] which can analyze cubical complexes of

this kind, we verify our Betti numbers for the first 7 iterations.

Figure 2.10: Cubical Complexes representing epsilon neighborhoods of the Sierpinski Tetrahedron.

The complexes have $; = 0, 3, 15, and 63 respectively.

34



It is rare that we are able to analytically calculate these growth rates with such ease. We
therefore wish to use computational methods to find calculated growth rates. As is often the case
for dynamical system attractors, we begin from a point cloud which approximates the set. This is
obtained by taking the orbit of an iterated function system with the fractal as the attractor. We
use 100,000 points. We then calculate the persistent homology of this point cloud using the alpha
complex, through the GUDHI alpha_complex_3d_persistence program [22]. Any features that have
persistence intervals of length less than 0.0001 are trimmed to remove excess noisy features. The

Barcode diagram is shown below in figure 2.11.

1D Barcodes 2D Barcodes

1200

350

300
1000 | b

250 -

I

600 b

150 - i

400 b
100 - N

200 b

Figure 2.11: The Barcodes for the Alpha complex on 10° points approximating the Sierpinski

Tetrahedron

Given the persistence intervals, to compute the growth rates of the Betti numbers we need the
cuttoff value p above which we can be confident that the alpha complex has comparable homology

to the e neighborhood of the true fractal. In [4] Robins uses the heuristic:
p ~ the e value at which there are no isolated points in the filtration

To see how p changes with the number of points we calculate p for a random orbit for each value
between 10 and 200 points. We repeat this calculation 10 times. We plot these data points as

well as their average and a curve matched to this data assuming a power-law relationship in figure
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2.12. Using this power-law curve our expected cutoff value with 10° points should be ~ 0.016. We

conservatively use p = 0.02 for our calculations.

0.7
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p(n)=1.1001 x 36707

0.6
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p(n)

0.4

03r

0.2

0.1 I I 1 I
0 20 40 60 80 100 120 140 160 180 200

number of points

Figure 2.12: The cut-off value p for n points distributed randomly on the Sierpinski Tetrahedron

Once we have our cutoff value we can calculate the persistent Betti numbers from the intervals.
Figure 2.13 shows both the 1st and 2nd Betti numbers as a function of the filtration parameter.
Below these graphs are the persistent Betti numbers 81 and 85°. This shows the important
difference between the concepts.

For 31 we see a large spike near the beginning and then a stair-case like effect as € grows. This
is what we expect. Initially there are no holes as each point is an isolated point. As e grows, the
points begin connecting and forming holes, many are short lived and noisy. This causes the initial
spike. Around p the e neighborhood of the points begins to more accurately reflect that of the true
underlying attractor. As we grow the epsilon neighborhood from here, there are critical epsilon
values at which large groups of holes will close as € exceeds the diameter of the triangular-shaped
holes described previously. These values are where there are sudden drops in the number of holes,
making the stair effect. The persistent Betti number graph is very similar to the standard Betti
number graph, but is only valid for € > p. This indicates there are few extra holes that form due

to the geometry of the fractal’s e neighborhood.
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There is however a drastic difference between the graph of 82(e) and that of 55°. The top graph
shows us that there are voids which form inside of the complex as it grows, and they seem to form
and disappear at predictable intervals. This is what we expect. As the triangular holes close, a
void forms within the space between them, but the void is then quickly filled in as € reaches the
diameter of the space between all 4 triangular loops. The graph of the persistent Betti number
however shows these voids “don’t count” when we are looking at the growth rates. While some
voids have non-trivial persistent interval lengths, the features mostly do not form until after p,
because they can not correspond to topological features of the true fractal. The persistent Betti

number is a constant 0, the growth rate -5 is therefore 0 as well.

Persistent Betti 1 Persistent Betti 2

o |

o | 0

100 -

Figure 2.13: The Betti numbers and persistent Betti numbers as a function of €

To find the calculated growth rate of 51 we find the negative slope of the line formed by plotting
the persistent Betti number vs € on a log-log plot. We use data from the range p ~ 0.02 < e <
0.2. This is shown in Figure 2.14. The calculated negative slope is with 95% confidence interval
2.07 + 0.06. This is above the true value likely because our cutoff value gives us only half of the
smallest “step” which overestimates the true value. Using more points could give us a better picture

of the true fractal but computation becomes unwieldy. Results are summarized in Figure 2.15.
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Figure 2.14: The persistent Betti numbers as a function of €

Exact | Calculated

Dim 2 -
Yo 0 -
Y1 2 2.07
72 0 -

Figure 2.15: Results for various indicies of the Sierpinski Tetrahedron

2.1.4 A “Holey” Fractal

The fractals that remove only one subcube have high fractal dimension igigg ~ 2.80735 and are
very dense. If the symmetries are chosen correctly, it would make sense that these fractals have
infinitely many cube-shaped voids within them, a perfect example of a non-zero “holiness” index.

The fractal shown in figure 2.16, fractal (0, -1, 0, 0, 0, 0, 0, 0) is one of these fractals.

Figure 2.16: A fractals with voids, fractal (0, -1, 0, 0, 0, 0, 0, 0).

The sequence of 35 for the cubical complexes of the fractal as shown in figure 2.17, as calculated

using Perseus [21] are as follows:
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Figure 2.17: Cubical Complexes representing epsilon neighborhoods of fractal. The complex has

Bs =0, 1, 17, and 156.

1,17, 156, 1210, 8831, 62907 (2.2)

We use an inductive method to find an expression for the sequence. First imagine stacking
7 of the step 0" iterations to create the 1%t iteration in figure 2.17 and imagine the single void
within this iteration. Symmetry 0 is the identity so no rotations or inversions or reflections are
performed. Thus if Bék) is the number of voids at step k we have /Bél) = 1. Now at iteration k
consider the 6 faces of the unit cube. 3 faces, the faces along the coordinate planes (not visible in
figure 2.17), are completely filled in at each iteration. The other 3 faces however each contain the
k*! iteration of the classical Sierpinski gasket. Then at the (k-+1)" iteration we shrink this down
and arrange 7 of these k' iteration approximations. This rearrangement creates one large void in
the center of the approximation just like in the 1st iteration. Then in addition, each of the 7 kP
iteration approximations will give us 7x (the number of voids in in the kth step) or 7 Bék). However
the arrangement is in such a way that we place 9 of the Sierpinski gasket sides up against 9 of the
filled in sides. This creates a void for each one of the loops in the 9 k'™ Sierpinski gaskets. That is

9 (3k2—_1> more voids. Thus in total we have that

o
Y — 14788 19 (3 . > k=1,2,3,.. (2:3)

Solving this recurrence relation we find the explicit formula

(k) _ 91

By i (2.4)

24 8 12
which is fascinatingly always an integer, and matches the sequence (2.2) we calculated.
We wish to show that each of the voids in the cubical complex correspond to true voids in the

fractal set and not just the finite approximation. This is needed to show we can use (2.4) as the
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persistent Betti number in our calculation of 9, not just the Betti number. The 3 sides of the cube

which lie on the axes planes

P ={(z,y,2) | x € [0,1],y € [0,1], 2 = 0}
P, ={(z,y,2) | y € [0,1],z € [0,1],z = 0}

P;={(z,y,2) | z€[0,1],z € [0,1],y = 0}

are subsets of the true set. This can be shown using the IFS representation of the the fractal. By
self-similarity we thus know that the 3 sides of each subcube parallel to the axes planes are all also

in the attractor, for example
P = {($,y,2) ‘ ye [1/27 1]7Z € [1/27 1]7'%' = 1/2}

is a subset of the fractal as well. We can then show that each of the voids counted in (2.4) is
contained within 6 of these planes and thus corresponds to a true void in the fractal set. This

justifies the computation of the “holiness” index or the 2°d growth rate to be

i 9B (AT 804 ) logT

~ 2.80735
—0log(1/e) n—oo log (27) log 2

which is exactly the same as the dimension of the fractal. Robins conjectures in [4] that if X is a
self-similar fractal set with +; # 0 then necessarily 7; = dimg(X) where dimg(X) is the similarity
dimension. The similarity dimension is the same as the box-counting dimension in our case, see
[23] for more on self-similarity. Both fractals we have analyzed support this conjecture.

We perform similar computational analysis for this fractal as we did for the Sierpinski tetrahe-
dron. However even with 10° points we are unable to calculate v, to a useable precision. The cutoff
p decays very slowly with the number of points: using the same methods as before we estimate
p ~ 0.025, even worse than the tetrahedron. This is due to the greater density of points needed to
approximate this fractal with higher fractal dimension. With more points needed computation of
the alpha complex also becomes difficult and slow. However, the persistent Betti numbers 85 do

qualitatively support our analysis as seen in figure 2.18.
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Figure 2.18: Persistent Betti numbers S as a function of epsilon with p = 0.025. Betti 2 shows

the stair-case pattern we expect, at values 1 and 17, the theoretical values 551) and ﬂéz) from (2.4).

Exact

Dim | 2.80735
Yo 0
1 0
v | 2.80735

Figure 2.19: Results for the indicies of the fractal
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Chapter 3

Conclusion

Despite thier interesting topological and geometric features, fractals like the Sierpinski relatives
can seem contrived. It is difficult to see an application for these abstract shapes. However, there
is value in studying fractals like these both from an educational as well as an artistic standpoint.

Fractal sets are common in nature, dynamical systems, and other real-world applications. It is
therefore useful to use somewhat contrived examples like the Sierpinski gasket to demonstrate the
kinds of features fractals can have such as non-integer fractal dimension and topological growth
rates. Because these examples are so artificial, they have the advantage that these properties can
be derived analytically. Then techniques such as topological data analysis and persistent homology
can be tested on these sets in order to verify their accuracy and effectiveness.

Our extension of the Sierpinski relatives to 3D extends the uses of the 2D relatives. Just as in
the 2D case, we can analytically derive many properties of these fractals and then perform other
computational techniques to test their accuracy. Adding a dimension adds complexity to the types
of examples we can analyze, for example the classical relatives cannot have a non-zero o as our
“holey” fractal does.

In addition to these academic uses, fractals like these are simply beautiful and interesting to
look at. Self similarity and fractal geometry has been seen in art since ancient times, see [24] for
an example of a Sierpinski triangle found on the floor of a medieval roman church. The 3D fractals
are additionally intriguing and interesting to look at. We hope to be able to visualize and 3D print
some of these fractals in the future.

In addition to future visualization it would be nice to completely categorize the topologies that
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exist within our set of fractals as has been done with the 2D relatives. Given the large number of
fractals that exist this may prove difficult, but if work is done to identify the number of unique
fractals up to symmetry it may be a more manageable computation.

Persistent homology and topological data analysis have been shown to be useful data analysis
techniques, from identifying a sub-group of breast cancers [25] to analyzing coverage in sensor
networks [26]. As technology evolves, we are faced with the analysis of larger and larger data
sets and having examples in 3D is important for education. In higher dimensions visualizing and
understanding the “shape” of the data becomes increasingly difficult, but persistent homology
allows us to quantify and explore the data in new ways.

Analyzing real-world data sets similarly to how we analyze the point-cloud approximation of
the fractals would also be an interesting next-step. Mandelbrot discusses how common fractals
are in nature [23] and how terrain, clouds, and plants can all be modeled with an iterative fractal
process. Work has also been done to identify trees based on the fractal dimension of their leaves,
see [27]. Perhaps 3D data from these types of natural objects could be used similarly, for example
identifying plants based on their “loopiness”, or rocks and clouds based on their “holiness”. This

could lead to new tools for object identification and recognition.
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Appendix A

Group Theory

Some definitions from group theory follow. These are necessary for understanding homology theory
as discussed in chapter 1. Often groups and free groups are described using multiplicative notation
(- instead of +), however the groups we deal with in this thesis, particularly the chain groups and

their subsets, use additive notation so we adopt that here.

Definition of a Group

A Group, denoted G = (S,+), is a set S along with an operation + that satisfies the following

properties:

e Closure: for all a,b € S, a+bisin S as well.
e Associativity: for all a,b,c € S, we have (a+b) +c=a+ (b+c¢)
e Identity: there is a unique identity element e such that a+e=e+a=a forallae S

e Inverse: for all a € S there is an inverse element —a such that a + (—a) = (—a) +a=¢
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Definition of a Free Group

A Free Group is the infinite group on the set of all “words” or sums that can be constructed from
a generating set S and its inverse S~!. For example consider the set S = {a,b} and its inverse

S~! = {—a, —b}. We denote the Free group with S as a generating set as Fj.

Fs = ({a,b,—a,—b,a+a=2a,a+bb—a,a+ (—a)+b+b=2b,...},+)
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Appendix B

Symmetry Groups

We discuss the symmetry groups for both the square and cube. These are important to understand
the Sierpinski relatives. For more see [19].

A square has a number of symmetries: ways in which we can flip/rotate the shape in order to
give us the same square. For example we can flip the square along its diagonal and the resulting
shape is identically a square. We could rotate the square 90 degrees and again get a square. These

examples are illustrated in Figure B.1. We inscribe an L in the square to visualize the operation

Figure B.1: Examples of two symmetries of the square, reflection about the diagonal (dg) and

performed.

rotation by 90 degrees (d3)

The set of possible symmetries of a square can be equipped with the operation of concatenation,
thus creating a group. For example, if we flip the square down its middle and then rotate it 90
degrees clockwise, we get the same square we would if we simply reflected the square along its
diagonal. This is illustrated in Figure B.2. We can denote each element of the symmetry group of
the square by d;. The index of each symmetry is arbitrary, but we use the ordering as defined in

[19]. Flipping along the vertical center line is d; and rotating 90 degrees is ds, so we have dsds = dg

49



where dg is the symmetry representing reflection about the diagonal. There are 8 symmetries total.
This is the 4th dihedral group, D4. The elements of Dy representing the symmetries of the square

are shown in Figure B.3. See [28] for more on dihedral groups and group theory.

.!

Figure B.2: Preforming two symmetry operations results in a third different operation

LI~
rgig g

Figure B.3: All 8 symmetries of the square

Since we know two elements concatenated will give us a third element, we can create a ” multipli-
cation table” of sorts which shows what the ”product” of two group elements is. This is commonly
called a Cayley table. We show the Cayley table of D, in figure B.4.

This symmetry group is important for our later examples of the Sierpinski relatives. The size
of this group is directly related to how many fractals we can create. See the following section for
more on this.

In chapter 2 we will extend the 2D Sierpinski relatives to a new class of 3D fractals. In 2D we
need the symmetry group of the square, in 3D we are interested in the symmetries of the cube.
This is also a commonly studied group, called the full octahedral symmetry group [29]. Whereas

the square’s symmetry group has 8 elements/symmetries, this group has 48. We show a few of
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i
01234567
001234567
1/1 23076 45
202 3015476
330126 75 4

jl4/4 6 5 702 1 3
55746 20 31
6/6 5 743 10 2
7174651320

Figure B.4: The Cayley Table for the D4 group. Choosing a column ¢ and a row j gives the

subscript for operation d;d;

the elements of this group in Figure B.6. A 3D analog of the inscribed L is placed in the cube to
visualize the operation on the cube in 3D space. The ordering of the elements is again arbitrary but
we use the conventional ordering where the first 24 elements follow the ordering of the symmetric
group Sy (the subgroup excluding inversions). The final 24 are the inversions of those first 24. We
also show the Cayley table of this group, but since it is so large we visualize the table with colors

instead of numbers, see Figure B.5.
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Figure B.5: Visualization of the Cayley table for the 3d Cube’s symmetry group. Each element

from 0-47 is represented by a color ranging from red to pink.

Figure B.6: 8 symmetries of the cube. Element 0 is the identity, others show rota-

tions/reflections/inversions.
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