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Abstract

Geisz, Joseph (M.S., Applied Mathematics)

3D Extension of the Sierpinski Relatives and an Analysis of their Persistent Homology

Thesis directed by Dr. James Meiss

The Sierpinski relatives are a class of fractals that have been studied and characterized ex-

tensively. They serve as an excellent introductory example of self-similarity. While topological

information about these fractals can be derived analytically, it has been demonstrated that “per-

sistent homology”, a concept in topological data analysis, can be applied to discrete point-set

approximations of the fractals in order to reveal information about the underlying structure of the

set. In this thesis we describe the Sierpinski relatives and some of the mathematical foundations

of persistent homology, a fascinating and evolving field at the intersection of pure mathematics

and computer science. We then propose a new set of fractals that are analogous to the Sierpinski

relatives but are 3-dimensional. This set contains many more fractals than the classical 2D relatives

and has more topological and geometric variation amongst its elements. The set contains elements

with a variety of fractal dimensions, and topological properties that are not possible in R2. We then

demonstrate the use of persistent homology techniques to analyze the structure of these fractals.
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Chapter 1

Background

1.1 Simplicial Homology

From dynamical system attractors to real world data, we often wish to classify sets according to

their general “shape”. Some of the most intuitive ways to classify sets such as these end up being the

most difficult to describe mathematically. For example, how many “parts” or distinct components

make up the whole set? Is it composed of a singular object or a collection of separate pieces? Does

the object have a hole like a donut where a string could pass through the middle? Or does it have

multiple holes? Is the object hollow like a balloon or solid all the way through like a rock? Does it

have many balloon-like voids like a block of swiss cheese?

1.1.1 Betti Numbers

Topology allows us to quantify such descriptors with Betti numbers. The kth Betti number or βk

essentially gives the number of k-dimensional holes in an object. The 0th Betti number describes

the number of connected components in a set, or how many pieces make up the whole object. The

1st Betti number describes the number of holes through an object. The 2nd Betti number is the

number of voids within 3d objects, like the inside of a balloon. Figure 1.1 illustrates the concept

of Betti numbers. The true definition of a Betti number extends to higher dimensional spaces, but

a set can only have a non-zero kth Betti number in Rn if k < n. Despite the relatively intuitive

explanation of these numbers in 3D, it takes many deep mathematical concepts to describe them

rigorously and compute them. For more in-depth descriptions see [1] or [2].
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Figure 1.1: The first object (from left to right) has β0 = 1 because it is only a single connected

component. The second object has β0 = 2 because it is composed of two disconnected components.

The third, a solid torus, has β1 = 1 because of the hole through the middle. The last, a ball with

two balls removed from the interior, has β2 = 2 because it contains two voids inside.

Most of Topology is not well suited for computers. Arbitrary topological spaces are very difficult

or impossible to describe numerically. However simplicial complexes, a specific type of space, are

easy to describe to a computer. Simplicial Homology, one of many homology theories, use simplicial

complexes which “triangulate” a space to define homology groups and from these groups define Betti

numbers. We explain the many ideas needed for this definition in the following section, and return

to Betti numbers again when we have enough background to describe them rigorously.

1.1.2 Simplicial Complexes

Oriented Simplicies

Geometrically, an oriented k-simplex is the convex hull of k+1 geometrically independent points

{x0, x1, ..., xk} in Rn with k ≤ n. In R3 we can have 4 different kinds of oriented simplexes, shown

in Figure 1.2. A 0-Simplex is a single point, a 1-Simplex is two points and the line between them,

a 2-Simplex is 3 points and the triangle formed with the points as verticies, and a 3-Simplex is

a 3D tetrahedron. Higher dimensional simplices cannot be visualized in 3 dimensions but can be

thought of as extensions of these. We can denote a k-simplex as σk = [x0, x1, ..., xk], and can think

of the simplex as purely an abstract or algebraic object independent of the geometry of the points.

The “faces” of a k-simplex are the (k-1)-simplices formed from taking the same points as the

original simplex but removing one point. This means the faces of a 3-simplex or tetrahedron are

the 4 triangles that make up its surface area, the faces of a triangle are the 3 line segments the

perimeter is composed of, and the faces of a 1-simplex are the points at either end.

It is important to note that the order of the points listed in the simplex does matter, it defines

2



Figure 1.2: The first 4 types of simplices: a point, a line, a triangle, and a tetrahedron.

the orientation of the simplex. A simplex with the same points could represent the same simplex,

or the “negative” simplex, one with the opposite orientation. In particular, given an ordering of

the points in the simplex, any even permutation of the points will define a simplex with the same

orientation as the original, and any odd permutation will give a simplex with negative orientation.

The orientation is arbitrary but important to maintain for calculations of homology.

For example Figure 1.3 shows the tetrahedron represented by the simplicial complex σ3 =

[x0, x1, x2, x3] We define the orientation of this simplex to be positive. Now consider a different

simplex on the same points given as σ̃3 = [x2, x0, x3, x1]. To get from the ordering of σ3 to the

ordering of σ̃3 by switching two elements at a time we can perform the following:

[x0, x1, x2, x3] switch 2 and 3

[x0, x1, x3, x2] switch 0 and 2

[x2, x1, x3, x0] switch 0 and 1

[x2, x0, x3, x1]

Since this took 3 operations (an odd number) this is an odd permutation of the original ordering.

Thus σ̃3 has a negative orientation.

Simplicial Complexes

A simplicial complex is a set of oriented simplices with two required properties. The first is that

a non-empty intersection of two simplices in the complex S must itself be a simplex in S, and the

second is that any face of a simplex in S must also be in S. Since our points are in Rn a simplicial

complex describes a subset of Euclidean space. We denote this region of space as |S| and call it

3



Figure 1.3: Example 3-Simplex

the “geometric realization of S”. The kind of region that can be described by a simplicial complex

is called a polytope or polyhedron.

We demonstrate the properties of a simplicial complex first with a true simplicial complex, and

then with two sets of simplices which fail to have the required properties.

Figure 1.4: Example Simplicial Complex. Orientation is indicated with arrows.

First consider the simplicial complex S1 below. Figure 1.4 shows the geometric realization of

S1 if x1 = (0, 0), x2 = (0, 1), x3 = (1, 0), x4 = (1, 1).

S1 = {[x1, x2, x3], [x1, x2], [x2, x3], [x3, x1], [x3, x4], [x1], [x2], [x3], [x4]}

Note that if we take the intersection of any two simplices, we get a simplex that is still in the set,

for example [x2, x3]∩ [x3, x4] = [x3] ∈ S1. Additionally any k-1 face of a k-simplex is also a simplex,

for example all three edges of the triangle [x1, x2, x3] are also simplexes in S1.

4



Now consider:

S2 = {[x1, x2], [x2, x3], [x1], [x3]}

Note that [x1, x2] ∩ [x2, x3] = [x2] is not in S2; the set is not closed under intersection. Therefore

S2 is not a simplicial complex.

Then consider:

S3 = {[x1, x2, x3], [x1, x2], [x1], [x2], [x3]}

Two faces of [x1, x2, x3] are not in the set, [x2, x3] and [x3, x1] so S3 is also not a simplicial complex.

If we have a Topological Space X that is homeomorphic to a polytope |S|, we say X is a

triangulated space and S is a triangulation of X. The triangulated space can have multiple different

triangulations, however the homology groups for any triangulation are the same as the homology

groups of X. Therefore finding the homology of some topological space can be reduced to calculating

the homology groups of a simplicial complex, which is something that can be done computationally

with well-studied algorithms. This is the foundation of most of computational topology [2]. However

it is important to note that many sets, certain fractals for example, cannot be triangulated by a

finite polytope.

1.1.3 Homology from Simplicial Complexes

Chain, Cycle, and Boundary Groups

We now discuss various groups which will lead us to the definition of a Homology Group. We

introduce a non-trivial but relatively simple simplicial complex that we will use throughout the

section as an example. We denote the complex as S̃ so as to avoid confusion with a general

simplicial complex S. Figure 1.5 shows a geometric realization of S̃. Arrows on edges indicate the

orientation of the 1-simplices and circular arrows indicate the orientation of the 2-simplices.

Figure 1.5: Example Simplicial Complex S̃
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S̃ = { σ01, σ
0
2, σ

0
3, σ

0
4, σ

0
5, σ

0
6, σ

0
7, σ

0
8, σ11, σ

1
2, σ

1
3, σ

1
4, σ

1
5, σ

1
6, σ

1
7, σ

1
8, σ21 }

where superscripts indicate the dimension of the simplex, subscripts are labels, and simplices are

defined as follows:

σ01 = [x1], σ02 = [x2], σ03 = [x3], ...

σ11 = [x1, x2], σ12 = [x2, x3], σ13 = [x3, x1], σ14 = [x3, x5],

σ15 = [x5, x6], σ16 = [x6, x7], σ17 = [x7, x8], σ18 = [x8, x6]

σ21 = [x1, x2, x3]

One can verify that this set has the properties required to be a simplicial complex. Intuitively

we can see that there is one “hole” (the 2D kind, the 1st Betti number) in this complex since the

edges on points x6, x7 and x8 make a loop. We can also see that despite the similar loop of points

on x1, x2 and x3 there is not a second hole here because the full triangle is filled in/there is a

2-simplex on those points as well as the edges. We need a way to differentiate these two loops to

ensure one counts as a hole while the other does not.

We denote the “kth-chain group” of a simplicial complex S as Ck. This is the free abelian group

(see appendix 4.1) with the collection of k-simplices from S as a basis. The inverses are then the

simplices with opposite orientation to the original set. A word in Ck is a k-chain, a formal sum of

a finite number of oriented k-simplices. We generally denote a k-chain as

ck =
∑
i

aiσ
k
i

so we write the kth chain group of a simplicial complex S as

Ck = {ck =
∑
i

aiσ
k
i | σki ∈ S} (1.1)

We consider ai ∈ Z but this definition can be extended to any abelian group like the reals.

As an example consider the group C1 from our example complex S̃. The basis for this group is

{σ11, σ12, σ13, σ14, σ15, σ16, σ17, σ18}. Thus any 1-chain, a formal sum of “edges” of the complex is in C1,

6



we write for example:

σ12 − 2σ11 = [x2, x3]− 2[x1, x2]

= [x2, x3]− [x1, x2]− [x1, x2]

= [x2, x3] + [x2, x1] + [x2, x1] ∈ C1

“ = ” − −

Arbitrary collections of simplices can be described as words in the chain group, for example the loop

that we have said intuitively forms a hole can be described as σ16 +σ17 +σ18, and the loop around the

triangle as σ11 +σ12 +σ13. However they could also be described as −σ16−σ17−σ18 and −σ11−σ12−σ13.

Because we will be discussing them later we will define these 1-chains as: l1 = σ11 + σ12 + σ13 and

l2 = σ16 + σ17 + σ18.

We then define the Boundary Operator, a function between chain groups. We say the boundary

operator ∂k : Ck → Ck−1 maps a k-simplex onto a sum of the (k-1)-simplices in its boundary. It is

the alternating sum of the simplex’s faces. We write the operator as:

∂k(σ
k) =

k∑
i=0

(−1)i[x0, ..., x̂i, ..., xk] (1.2)

where [x0, ..., x̂i, ..., xk] is the (k-1)-simplex/face resulting from deleting the vertex xi. From our

example take the boundary operator of the only 2-simplex we have:

∂2(σ
2
1) = [x2, x3]− [x1, x3] + [x1, x2]

= [x2, x3] + [x3, x1] + [x1, x2]

= σ12 + σ13 + σ11

∂2( )“ = ” + +

Note that this sum of edges, σ12 + σ13 + σ11 is the previously defined l1; the “loop” surrounding the

2-simplex.

Note three important properties of the boundary operator:

1. ∂k(
∑

i aiσ
k
i ) =

∑
i ai∂k(σ

k
i )

7



2. ∂k(∂k+1(ck)) = 0

3. ∂0(σ
0) = 0 for all zero-simplexes

Property 1 is linearity: the boundary operator is linear. Property 2 says that the boundary

of any boundary is zero. This is important in the following definitions of the cycle and boundary

groups and a proof can be seen in [3]. Property three is a convention, that the boundary operator

of a 0-simplex or single point is 0.

As an example supporting property (2), we take the boundary of the boundary of the 2 simplex

from before:

∂1(∂2(σ
2
1)) = ∂1(l1) = ∂1(σ

1
2 + σ13 + σ11)

= ∂1([x2, x3] + [x3, x1] + [x1, x2])

= ∂1([x2, x3]) + ∂1([x3, x1]) + ∂1([x1, x2]) (by linearity)

= ([x3]− [x2]) + ([x1]− [x3]) + ([x2]− [x1])

= [x3]− [x3] + [x1]− [x1] + [x2]− [x2]

= 0

Now we define the kth cycle group Zk to be

Zk = {ck ∈ Ck | ∂k(ck) = 0}. (1.3)

This is a subgroup of Ck; it is the group consisting of k-chains that map to zero under the boundary

operator. In other words it is the kernel of ∂k. Any k-chains in this set are called k-cycles.

We look at some examples from Z1 of S̃. We showed previously that the chain σ12 + σ13 + σ11

is in the kernel of ∂1. Additionally the other “loop” mentioned before, σ16 + σ17 + σ18 can easily be

shown to have 0 boundary. Therefore both l1 and l2 are in Z1. For 1-simplices this group consists

essentially of the loops on the edges in the complex.

The cycle group has allowed us to identify the loops in our example complex S̃, but as mentioned

there is a topological difference between the right and left loops, the left is filled in with a 2-simplex

and thus not a “hole” while the left loop is empty. To distinguish these we introduce Bk, the kth

boundary group. This is the group of k-chains which bound a k+1 chain, i.e. the image of ∂k+1.

Formally this becomes

Bk = { ck ∈ Ck | ∂k+1(ck+1) = ck for some ck+1 ∈ Ck+1 } (1.4)

8



Note that by property (2) every boundary is a cycle so we can say that:

Bk ⊆ Zk ⊆ Ck

For our two 1-cycles or loops (the left loop: l1 = σ11 +σ12 +σ13 and the right loop: l2 = σ16 +σ17 +σ18)

we can then distinguish the two, as l1 will be in Bk as the boundary of a 2-simplex but l2 will not

as there is no simplex in C2, no triangle, which has this cycle as a boundary.

In summary, we have described 3 groups built from a general simplicial complex S for each

dimension k:

Ck = the kth chain group: the free group with the k-simplices in S as the generating set.

Elements are called k-chains.

Zk = the kth cycle group: the subgroup of Ck consisting of only k-chains with zero boundary.

Elements are called k-cycles.

Bk = the kth boundary group: the subgroup of Zk consisting of only k-cycles that are also the

boundary of some (k+1)-chain. Elements are boundaries or boundary-cycles.

We see from our example that the boundary group gives us the difference between cycles that

bound holes and cycles that are “filled in”.

The Homology Groups and Betti Numbers

We can now define Hk, the kth Homology group. It is the quotient group of Zk and Bk, we write

Hk = Zk/Bk. (1.5)

Elements of the group are equivalence classes of k-cycles that do not bound any k+1 chain. Two

k-cycles z1k, z
2
k ∈ Zk are in the same equivalence class if z1k − z2k ∈ Bk. We denote the equivalence

class that contains zk as [zk].

This implies that any cycle that is itself in the boundary group is in the equivalence class with

the 0 element. Therefore our filled in loop l1 in a way “vanishes” in the homology group: [0] = [l1].

However, l2 does not as it does not belong to Bk. So l1 and l2 are fundamentally different in the

Homology Group. We briefly noted earlier that both l2 and −l2 can equivalently describe the right

loop. We see then that l2− l2 = 0 ∈ Bk so both are in the same equivalence class that corresponds

to a single loop around the hole. 2l2 will be in a different equivalence class and for our simple
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example we can show that we will have:

H1 = {[0]} ∪ { [nl2] | n ∈ Z+}

We also now formally define the kth Betti number as

βk = rank(Hk) (1.6)

This gives us what we wanted from the beginning, a way to say how many k-dimensional holes an

object has, at least for simplicial complexes. Then if a topological space can be triangulated by

some simplicial complex, we can define the Betti number of the space as the Betti number of the

triangulation, as the homology groups are the same.

The rank of H1 for S̃ is 1, for our example complex S̃. This is the 1st Betti number of S̃. We

could do similar analysis to show that:

H0 = {[0]} ∪ { [nσ01 +mσ04] | n,m ∈ Z+ }

Every 0-simplex will be in Z0 because of property 3 of the boundary operator, all points have

zero boundary. Then points which are in the same connected component, or equivalently are the

boundary of some 1-chain, will be put in the same equivalence class. Essentially every 0-simplex

that is in the large connected component will be put in the same equivalence class as σ01, and σ04

will have its own equivalence class, and then any integer combination of these two classes will be

their own class in the homology group, giving this Homology group rank= 2. This is what we would

expect, as the complex has two disconnected components.

Thus this simplicial complex has β0 = 2 and β1 = 1. Any higher Betti numbers are zero, as the

homology groups are trivial in R2 for k ≥ 3

This general theory allows us to find the Betti numbers for arbitrary simplicial complexes by

finding homology groups and identifying their ranks. However for any complex larger than our

example, this computation would be extremely long and complicated. In the next section we show

how the rank of homology groups can be identified computationally using known matrix algorithms.
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D1 =

σ11 σ12 σ13 σ14 σ15 σ16 σ17 σ18





−1 0 1 0 0 0 0 0 σ01

1 −1 0 0 0 0 0 0 σ02

0 1 −1 −1 0 0 0 0 σ03

0 0 0 0 0 0 0 0 σ04

0 0 0 1 −1 0 0 0 σ05

0 0 0 0 1 −1 0 1 σ06

0 0 0 0 0 1 −1 0 σ07

0 0 0 0 0 0 1 −1 σ08

DT
2 =

σ11 σ12 σ13 σ14 σ15 σ16 σ17 σ18

[ ]
1 1 1 0 0 0 0 0 σ21

Figure 1.6: Boundary Matrices of S̃. Note the transpose on D2.

1.2 Computing Topology

1.2.1 Computing Betti Numbers: Smith Normal Form

We introduced simplicial homology with the motivation that we can use algorithms to find ho-

mology groups and Betti numbers. Therefore we show that we can reduce the computation of

homology groups and Betti numbers to linear algebra and matricies, which is easily implemented

computationally.

We represent our boundary operators ∂k : Ck → Ck−1 as matricies Dk. Using the notation of

[4] if our complex S has mk k-simplices and mk−1 (k-1)-simplices in it, then Dk is an mk−1 ×mk

matrix. Since the boundary of each k-simplex is a sum of (k-1) simpicies, the entry [Dk]i,j is ±1 if

the ith (k-1)-simplex is in the boundary of the jth k-simplex and 0 if it is not.

In Figure 1.6 we show the boundary matrices from our example S̃. As an example, we see that

∂1(σ
1
2) = σ03−σ02 so entry (3, 2) is 1 and (2, 2) is -1, the respective coefficients in the boundary sum.
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The Boundary Matrices Dk and Dk+1 completely characterize the homology group Hk, and

computing the Smith Normal Form of these matrices tells us all we wish to know. The Smith

Normal Form, originally described in [5], is found essentially by performing Gaussian Elimination,

except we want to maintain integer entries of the matrix, so no division is allowed. We then reduce

Dk to D′k in the block matrix form below.

D′k =

 Bk 0

0 0


Bk is an lk × lk diagonal matrix with lk ≤ mk and non-zero diagonal entries. The rank of

the cycle group Zk is mk − lk or the number of zero columns in the matrix D′k. The rank of the

Boundary group is the rank of matrix Dk+1 or the number of non-zero columns in D′k+1 which is

lk+1. The rank of a quotient group is the rank of the original group minus the rank of the subgroup

so we have

βk = rank(Hk) = rank(Zk)− rank(Bk) = mk − lk − lk+1. (1.7)

The diagonal entries of Bk, if greater than 1, give us the torsion coefficients of the homology

group Hk. However in cases where we are not interested in torsion coefficients, we can simply

perform Gaussian Elimination on Dk instead of computing the Smith Normal Form. This will give

us the same number of non-zero diagonal elements. This is advantageous because requiring integer

elements of the matrix often results in extremely large numbers during the calculation which can

cause computational issues.

1.2.2 Simplicial Complexes from Finite Data

Since in most contexts we are only given a discrete set of points to approximate a topological

space, we wish to construct a simplicial complex from the set of points which approximates the

underlying space. There are many ways to do this, but we show two of the most straight-forward

ways to construct the complex. Generally we have some parameter ε that represents the scale at

which we are looking at our data. To be more precise we wish to approximate the ε-neighborhood of

the original topological space with the ε-neighborhood of our points, as this takes into account the

discrete nature of our point sample. Figure 1.7 illustrates generally what we wish to accomplish.

For simplicity we restrict our discussion to Rn with the L2 metric but the complexes can be defined

using different metrics.
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Figure 1.7: We have a sample of points from a topological space, and wish to construct a simplicial

complex that approximates the space.

Cech Complex

All of our complexes will begin with all of the points in the data set which approximates our

topological space as 0-simplexes. Then we will add higher-order simplices based on some closeness

condition on sets of points.

Informally the Cech Complex grows n-dimensional balls around each simplex in Euclidean space

Rn and when the balls overlap, the simplex composed of the points at the center of each sphere is

added to the complex. A more formal description follows, see [6] for more details.

Given our data set of N points D = {xi}Ni=1 ⊂ Rn and a parameter ε we construct a simplicial

complex C(ε), called the Cech complex. Define Bi(ε) as the closed ball of radius ε centered at

point xi for i = 1, 2, 3, ..., N . For any set of k + 1 ≤ N points {x(j)}k+1
j=1 ⊂ D the k-simplex

σk = [x(1), x(2), ..., x(k+1)] is in C(ε) if and only if

k+1⋂
j=1

B(j)(ε) 6= ∅ (1.8)

Figure 1.8 Illustrates the process of creating the Cech Complex. This complex is desirable as the

simplicial complex is guaranteed to have the same homology as the union of ε-balls used in its

definition, equivalently the ε-neighborhood of the point set, due to the nerve theorem, see [4].

Vietoris-Rips complex

The Vietoris-Rips or Rips complex is very similar to the Cech Complex, but instead of looking for

overlapping balls we simply measure the distance between each pair of points and add a simplex

when all pairwise points are within a distance ε of each other.
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Figure 1.8: Building a Cech Complex: The first frame shows the original data set. The second

shows the balls of radius ε centered at each point. Then for each set of balls with a non-empty

intersection we add a simplex in the third frame. The final frame shows the resulting simplicial

complex.

More formally, given a data set D = {xi}Ni=1 ⊂ Rn and a parameter ε we construct the Rips

complex R(ε). Instead of considering the intersection of balls we simply say that for any set of

k + 1 ≤ N points {x(j)}k+1
j=1 ⊂ D the k-simplex σk = [x(1), x(2), ..., x(k+1)] is in R(ε) if and only if

d(x(i), x(j)) ≤ ε for all i, j ∈ {1, 2, 3, ..., k + 1} (1.9)

This requirement is only subtly different from the Cech Complex. When comparing the Cech and

Vietoris-Rips complexes we often consider the ε of the Cech complex to be half that of the Vietoris-

Rips Complex, because two points which connect as a 1-simplex in the Cech Complex at ε1 will

connect at 2ε1 in the Vietoris-Rips Complex on the same set of points.

In fact in [7] it has been shown that we can bound the Cech complex using the following lemma.

Lemma: For any ε > 0 we have that R(ε) ⊆ C(ε
√

2) ⊆ R(ε
√

2)

It is however possible to have a set of points that are pair-wise within a distance ε of each other

despite having no intersection of the balls of radius ε/2 centered at each one. An example is shown

in Figure 1.9. The Cech complex has better guarantees on accurate topology, see [8], however the

Rips complex is much less computationally expensive and still gives good results.

Alpha Complex

The alpha complex has many computational advantages over the Cech and Rips complex especially

for point sets in R2 and R3. See [9] for a summary and [10] for algorithms in the 3D case. Essentially
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Figure 1.9: Cech complex vs Vietoris-Rips complex on the same 3 points. Note the 2-simplex

(triangle) filled in on the left but not the right, and the lack of a 3-way intersetion of balls on the

left.

the alpha complex uses the same concept of ε-balls as the Cech complex, but takes their union with

the Voronoi cells of the point at their center. The Voronoi cell of point xj is the region of space in

which the distance to the point xj is less than the distance to any other point in the data set. If

Vj is the Voronoi cell of point xj then the definition is nearly the same as the Cech complex but

condition (1.8) for a simplex to be in the alpha complex A(ε) becomes

k+1⋂
j=1

B(j)(ε) ∪ Vj 6= ∅ (1.10)

Assuming general position of the data points, this guarantees that the complex will never have

a simplex of dimension greater than the space in which the points are embedded, and will have

fewer k-simplices than the Cech complex even for k less than the dimension. In fact A(ε) ⊆ C(ε),

but still gives the topology of the ε-neighborhood of the points.

There are many other ways to construct simplicial complexes from finite data sets, see [11]

for a description of the witness complex, or [12] for a description of cubical complexes which

use “elementary cubes” as the basis for homology rather than simplices. Some more complicated

constructions down-sample the data by not using all of the data points in the original 0-simplex set,

which can be very advantageous for computation. These three examples, the Cech, Rips, and alpha

complexes however give a good intuition as to how complexes are constructed using some closeness

parameter, generally called ε. Considering how the simpical complex changes as a function of this

parameter leads us to the notion of persistence discussed in the following section.
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1.3 Persistent Homology

1.3.1 Filtrations and Persistence

Now for any type of simplicial complex we define with a distance parameter ε, we can imagine

“growing” the complex as we let ε range from 0 to infinity. We begin to think of this parameter

as a sort of time variable. Observing the way the homology of the complexes change over time

can give us an idea of which holes are important and which can be considered noise. Persistent

homology is developed in [13] and [4].

Given a simplicial complex K, which for our purposes we assume to be finite, we assign each

simplex a “birth time”. This can be thought of as a function from K into the reals b : K → R

where for a simplex σ in the complex we have a birth-time b(σ). We require that if σ1 is a face of

σ2 then b(σ1) ≤ b(σ2). This requirement ensures that the set

K(ε) = {σ ∈ K|b(σ) ≤ ε} (1.11)

is itself a simplicial complex. This can also be thought of as the preimage of the interval (−∞, ε],

in other words K(ε) = b−1((−∞, ε]). Because of our assumption that K is finite we know there

is a minimum and a maximum birthtime. Therefore for any ε which is lower than the minimum

birth-time we know that K(ε) is the empty set and for any ε which is greater than or equal to the

maximum birth-time that K(ε) is K. With a finite, discrete set of birth-times we also know that

there are a finite and discrete number of unique complexes, and they are all sub-complexes of K.

We can then index them so that we have the following.

∅ = K0 ⊆ K1 ⊆ K2 ⊆ ... ⊆ Kn−1 ⊆ Kn = K (1.12)

This set of simplicial complexes {Ki}ni=0 each a sub-complex of the next, is called a filtration.

As discussed before we can calculate the Betti number of each one of these simplicial complexes

individually. However, if we consider the way in which the complexes grow, we can glean more

information than simply just how many holes exist at each step. Holes are born and die at different

times/ ε values, and we can take into account those that persist for longer intervals in the filtration.

Each complex Ki will have homology groups Hp(Ki) which contain equivalence classes corre-

sponding to the p-dimensional holes of each complex. For 0 ≤ i ≤ j ≤ n we have that Ki ⊆ Kj and

thus we also have an inclusion map between the spaces. This gives us the induced homomorphisms
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f i,jp : Hp(Ki)→ Hp(Kj) for each dimension p. These homomorphisms map the equivalence classes

representing holes in Ki to equivalence classes representing holes in Kj so that we can identify holes

that exist in both subcomplexes. We define the image of these homomorphisms to be the persistent

homology groups, H i,j
p = imf i,jp and the ranks of these groups are the persistent Betti numbers,

βi,jp = rank(H i,j
p ). (1.13)

The persistent Betti numbers are distinct but related to the standard Betti numbers. βp(Ki) and

βp(Kj) are the number of p-dimensional holes in the complexes Ki and Kj respectively. βi,jp Is

the number of p-dimensional holes that exist in both Ki and Kj . Therefore the persistent Betti

number must be less than or equal to both of the standard Betti numbers.

The complexes we have discussed, Rips, Alpha, Cech, as well any other complex defined similarly

using a distance parameter effectively defines the birth time function b. The birth time for any

simplex in one of these complexes is the minimum epsilon at which the complex contains the

simplex. For example, the birth-time of an edge in the Rips complex is the distance between the

two points.

The full complex K for the Rips complex is the complete complex on the set of points that we

begin from. If our point set has m points, K = limε→∞R(ε) is an m-simplex with every one of its

faces, and their faces, and so on. Once ε is greater than the diameter of the point-set, every edge

will be connected and therefore every possible triangle, tetrahedron, and so on. The same is true

for the Cech complex, the only difference is in intermediate filtration values.

The full complex K for the alpha-complex is the Delaunay Triangulation of the point set. This

has far fewer simplexes than the full m-simplex of the m points, and assuming general position of

the points will never give a simplex of dimension higher than that of the embedding space. This is

highly advantageous for computations, as persistent homology algorithms scale poorly with number

of simplexes.

1.3.2 Visualizing Persistence

Being able to visualize how the homology of a filtration changes is important, especially for non-

trivial examples with complex topology. To illustrate some of the ways to visualize the persistent

homology of a simplicial complex built from a point set we introduce the example in Figure 1.10.
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Figure 1.10: We have a sample of 75 points from annulus and wish to analyze the topology

Intuitively we can see these points have been sampled from an annulus. We would expect an

annulus to have 1 component and 1 hole. Figure 1.11 shows the balls of various radii growing

around each point.

Figure 1.11: We grow balls of epsilon around each point. The collection of these balls will have the

same homology as the Cech complex, approximated closely by the Rips Complex.

We calculate a filtration using the Rips Complex on these points. Thus when our filtration

parameter is zero, we will have a large number of disconnected components (in our case 75). Then

as the parameter grows, more and more components will become connected, until eventually we

expect a single connected component. As for the number of holes, initially with distinct points

we expect to have no holes at all. Then as the components connect we expect some holes to form

but then die quickly due to the noisiness of the data. Then at some point we would expect all

holes to fill in except the large one in the middle. This large hole once it is born should last a

long time compared to the other smaller, noisier holes at the beginning of the filtration. We use
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Persistence Diagrams and Barcodes to visualize the exact calculated persistent homology to connect

our intuition with quantitative results.

Barcodes

Barcodes, see [7], are perhaps the most intuitive way to visualize persistence. Throughout the

filtration, topological features will be born and die, and a barcode plots an interval for each topo-

logical feature, beginning at the birth time of the feature and dying at the death time. Figure 1.12

shows the 0 and 1 dimensional Barcodes of our annulus data. These were created using Javaplex,

see [14].

Figure 1.12: Barcodes from the Rips Complex constructed from the annulus-sampled point set

In the 0-dimensional barcode, there are 75 lines, each beginning at 0. These each correspond to

one of the points in our original point-set. then as epsilon grows, edges form and components begin

to combine, so some of the intervals end as they are absorbed into other components. By about

ε = 0.2 all of the components have combined into one single large component. This final large

component lasts the entirety of the filtration. This supports our intuition as well as our hypothesis

that the points come from a single annulus.

In the 1-dimensional barcode, there are initially no holes. Between 0.1 and 0.2 some holes

form but generally die shortly after forming. These short intervals correspond to our supposed

“noisy” holes. Then after 0.2 only one of the holes lasts, but it lasts the rest of the filtration. (At

least past ε = 0.6. It eventually also closes.) This corresponds to the large hole in the middle of

the annulus. Its long interval quantitatively supports this hole belongs to the “true” underlying

topological space.

Given the set of barcode intervals, we can easily compute Betti numbers and persistent Betti
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numbers. The pth Betti number of the complex βp(K(ε)) is the number of intervals that intersect

with a vertical line at ε. The persistent Betti number βλ,εp (K) is the number of intervals that

intersect with both a vertical line at λ as well as a vertical line at ε. These topological features

“persist” throughout the interval. [7]

Persistence Diagrams

Persistence Diagrams, see [15], encode the same information as the Barcodes but slightly differently.

Each topological feature is represented as a point in the plane, with x coordinate as the birth time

and y coordinate as the death time. Features that persist beyond the end of the filtration are

represented as triangles along the final filtration value. Figure 1.13 shows the Persistence diagrams

for our example data.

Figure 1.13: Persistence Diagrams from the Rips Complex constructed from the annulus-sampled

point set

Of course a feature’s death time must always come after its birth, so all points will be above the

line y = x. The length of an interval in the barcode corresponds to the closeness of a point to this

line. We can see that in both the 0 and 1 dimensional persistence diagrams there are many features

that are close to this line, and a single feature that exists far from the diagonal, corresponding to

the singular connected component and hole in the underlying annulus.

Betti numbers and persistent Betti numbers can also be calculated from a persistence diagram.

The persistent Betti number βλ,εp (K) is the number of points which exist above and to the left

of a point (λ, ε). This naturally gives rise to a “persistent rank function” which is a function of
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two variables which returns the persistent Betti number. This rank function has proved useful

for defining statistics to compare filtrations [16]. The classical Betti number is the rank function

exactly on the diagonal.

1.4 Fractals and Symmetry

1.4.1 Scaling Properties and Homology of Fractals

Persistent homology can provide powerful computational results for finding the topological features

of simple spaces approximated by point sets. But many topological spaces have features that are

not so easily deduced from data. In particular, fractal sets will have topological features that are

much less intuitive. Consider the Sierpinski gasket in Figure 1.14, which will be discussed in detail

later.

Figure 1.14: The Sierpinski Gasket

What are the Betti numbers of the Sierpinski gasket? This question is much more difficult

to answer than for an annulus. It can be shown that the gasket is indeed a single connected

component, so β0 = 1. However, the number of holes the object has is infinite, no matter how close

you look, there will be another hole by definition. The 1st Betti number for this fractal is therefore

not well-defined.

In order to gain useful information about fractal sets from finite data, we draw inspiration from

the box-counting or Minkowski dimension. The box-counting dimension is defined as

dim(S) = lim
ε→0

log(N(ε))

log(1/ε)
(1.14)

where N(ε) is the number of boxes of side-length ε required to cover the set. In the case where

this limit does not exist we replace the limit with the limsup. This is derived from the assumption
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that there is power-law scaling N(1/n) ∝ nd for manifolds, see [17]. The growth rate d is always

an integer for manifolds, but with fractal sets we often find non-integer dimensions.

In [18], Robins defines the “disconnectedness index” or γ0 analogously to the box-counting

dimension as

γ0(S) = lim
ε→0

log(C(ε))

log(1/ε)
= lim

ε→0

log(β0,ε0 (S))

log(1/ε)
(1.15)

with the function C(ε) being the number of components that the ε neighborhood of a fractal has.

Persistent Betti β0,ε0 (S) is the number of 0-dimensional holes that exist in the fractal and persist

into the ε neighborhood of the set S. Our definition of persistent betti numbers assumed a simplicial

complex and filtration, but they can be defined over ε neighborhoods just as we defined them over

a filtration.

This index can be similarly defined for any arbitrary dimension, which only slightly changes the

formula. For β0,εi (S) being the number of persistent i-dimensional holes in the ε-neighborhood of a

set S, we define

γi(S) = lim
ε→0

log(β0,εi (S))

log(1/ε)
(1.16)

to be the ith persistent Betti growth rate. Robins calls the growth rate for i = 1 the “loopiness”

index, as it measures how the loops or holes scale within the fractal. The index for i = 2 she calls

the “holiness” index as it measures how the number of bubble-like voids a fractal has scales with

ε, reminiscent of holey swiss-cheese.[4]

It is important that the indices are defined using persistent Betti numbers, because it is possible

that short-lived holes form and disappear as ε grows. We only want to count holes in the ε

neighborhoods of the fractals that correspond to holes in the fractal itself.

This is only analytically computable in idealized situations. In practice, as with the box count-

ing dimension we wish to be able to calculate approximate growth rates from approximations of

the fractal. This is where persistent homology becomes useful. Using a finite point-set which ap-

proximates our fractal we create a filtration such as the Rips or Alpha complex which is well suited

for approximating the homology of a set’s ε neighborhood. We calculate a value ρ, our cutoff value,

which is the minimum value that we believe our filtration reasonably approximates the fractal’s ε

neighborhood. ρ depends on the noisiness and density of our point-set. We can then compute the
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approximate growth-rate as

γi(S) ≈ lim
ε→ρ

log(βρ,εi (S))

log(1/ε)
(1.17)

using the persistent betti numbers of the filtration. This is the method we use to analyze our

fractals in the following sections, see [4] for examples in 2D.
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1.4.2 The Sierpinski gasket and its relatives

The Sierpinski gasket is a classical example of a 2D fractal, often used to introduce the idea of

self-similarity [19]. The intuitive way to imagine forming the Sierpinski gasket is to begin with a

unit square, divide it into 4 equal quarters, remove the top right quadrant, shrink the resulting

shape uniformly by a factor of two, and replace the 3 remaining quarters with the smaller version

of the whole. Repeating the shrinking and replacing over and over again limits to the Sierpinski

gasket. It is easy to see the self-similar structure of this set: one third of the overall shape is exactly

similar to the entirety of the fractal.

Figure 1.15: Creating the Sierpinski gasket iteratively

The Sierpinski relatives are a class of fractals created similarly to the Sierpinski gasket, however

at the “shrinking” step we introduce an additional rotation/flip for each of the 3 non-empty quad-

rants. Figure 1.16 shows some examples. Each rotation/flip is an element of the symmetry group

of the square which has 8 elements. The symmetry group of the square is discussed in appendix

4.2. With 3 squares there are 83 = 512 ways to choose the symmetries, but excluding identical or

reflected fractals there are 232 unique fractals.

Figure 1.16: Some examples of forming Sierpinski relatives

A second way to describe the Sierpinski gasket and its relatives is with an Iterated Function

System or IFS. An IFS, in general, is a finite set of contraction mappings on a complete metric

space. The contraction mapping theorem shows that in a complete metric space an IFS has a

unique, non-empty fixed set S, see [19]. This gives us a more mathematical way of describing the
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Sierpinski relatives. For the original gasket we have the following 3 contraction mappings from R2

to R2:

f1(~x) =
1

2
~x

f2(~x) =
1

2
~x+

1/2

0


f3(~x) =

1

2
~x+

 0

1/2



The Serpinski gasket is then the unique fixed set S ⊂ R2 such that

S = ∪3i=1fi(S) = f1(S) ∪ f2(S) ∪ f3(S) (1.18)

Each Serpinski Relative can be described by equation (1.18) as the attractor of an Iterated Function

System consisting of 3 affine contraction mappings but with different functions fi.

Figure 1.17: Approximating the Sierpinski gasket with the Chaos Game

The IFS description of fractals gives us a powerful way to computationally approximate the

attracting set. Often called the “chaos game” we begin by choosing a random point in the unit

square x0. We then iterate this point to find xk+1 = fi(xk) where fi is a randomly chosen contraction

mapping from the Function System. For our purposes we choose a random function uniformly and

iid, but it is common to assign different probabilities for each mapping. If the initial point x0 is in

the fixed set of the IFS, the iterates will stay within and fill in the fixed set. This creates a dynamical

map with the fixed set of the IFS as an attractor, see [20]. Implementing this computationally,

we find the orbit of a randomly chosen point and by ignoring the first few iterates we obtain a
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point-cloud approximation of the attractor. The more iterates we take, the more densely we fill the

attractor, allowing us to balance precision and computational efficiency when we wish to analyze

the properties of these sets.

Figure 1.18: Some Sierpinski relatives created with 20000 points and the chaos game
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Chapter 2

3D Sierpinski relatives and Analysis

2.1 3D extension of the Sierpinski relatives

We wish to create a set of 3D fractals analogous to the Sierpinski relatives. Instead of beginning

with the 2D unit square we generate our fractals by subdividing the unit cube into 8 smaller cubes.

It is not obvious which of the 8 cubes, and how many, we should remove in 3 dimensions so to

be as general as possible we allow our set of fractals to include any choice of the 8 sub-cubes to

be removed. After we remove n cubes with 0 < n < 8, the analogy continues. Just as in the 2D

case we shrink our new shape by a factor of 2, and replicate it in each of the 8 − n remaining

subcubes. Each of these 8− n cubes will be rotated, flipped, and/or inverted in some way at each

iteration. Repeating this shrinking, rotating, and replicating process gives us a class of fractals

which intuitively extend the Sierpinski relatives into 3D.

The choice of flipping/rotating/inverting for each sub-cube is associated with one of the elements

of the symmetry group of the cube, just as the Sierpinski relatives were associated with elements

of the symmetry group of the square. The cube is “dual” to the octahedron, so the symmetry

group of the cube is referred to as the octahedral symmetry group, which has 48 elements including

symmetries that are not oreintation-preserving. See appendix 4.2.

We introduce a reference cube with labeled verticies for convenience in Figure 2.1. Each sub-

cube/eighth will be referred to by the numbers on the vertex incident to the cube. We assume

point 3 is at the origin, point 1 is at (0,0,1), and point 4 is at (1,0,0).

As an example of a fractal from this set, Figure 2.2 shows the first few iterations and attracting
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Figure 2.1: Reference cube, 3 is the origin, 1 is on the z axis, 4 is on the x axis

set of a particular fractal. We remove cubes 2, 5, 6, and 8. We color cube 1 green, 3 red, 4 yellow,

and 7 blue. We shrink this shape down, and replicate it in each sub square. In analogy to the

Serpinski gasket we choose our symmetries as the identity. This gives us a 3D Serpinski gasket

with 2D gaskets on each plane.

Figure 2.2: 3D fractal (0,−1, 0, 0,−1,−1, 0,−1), iterations and attractor

We would like to know how many unique fractals are in this set. There are 8 initial cubes to

choose from. Each one can be either chosen as empty, or if non-empty can be associated with any

of the 48 elements of the octahedral symmetry group. There are thus 49 choices for each of the

8 cubes so we have 498 − 1 = 33, 232, 930, 569, 600 or over 33 trillion possible attractors. 1 must

be subtracted to avoid counting the “empty” fractal where we choose all cubes to be removed.

This leads us to a notation to specify any attractor in our set. We specify a fractal from our set
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using an 8-tuple with elements from the set {−1, 0, 1, 2, 3, ..., 47}. If the 1st number in the tuple

is -1, then sub-cube 1 is removed, otherwise the number refers to which symmetry group element

sub-cube 1 is associated with for iteration. Thus each number in the tuple indicates what we do

to each corresponding sub-cube, whether it be to remove, rotate, flip, and/or invert. Our previous

example would thus be indicated as fractal (0,−1, 0, 0,−1,−1, 0,−1) as d0 is the identity element

of the octahedral symmetry group.

Of course, similar to the 2D case there will be many identical attractors within this set, and

many that only differ by a rotation. Since the attractor itself can be rotated in any of the 48

ways associated with the cube and another distinct combination of symmetries can be chosen to

create this rotated attractor we can immediately divide this number by 48, so there are less than

(498 − 1)/48 = 692, 352, 720, 200 unique attractors, up to symmetry.

There are other repeat attractors in our set, even eliminating these rotational duplicates. A

full analysis of how many there are is out of the scope of this thesis, but would be an interesting

problem likely involving group theory and combinatorics. There are also attractors that are not

fractal, for example any choice where no sub-cube is chosen to be removed gives an attractor that is

the entire cube. Any choice where all but one sub-cube is removed gives a single fixed point. Even

eliminating repeats and “boring” attractors leaves us with an overwhelming number of possibilities,

and thus a full analysis of the topology and properties of the elements our new set of 3D fractals

is not currently feasible. Thus we perform whatever general analysis we can and then search for

interesting fractals among the sea of possibilities which will give us an idea of the types of interesting

shapes we can find.

2.1.1 Fractal Dimension

We investigate the box-counting dimension of the Sierpinski relatives as defined in equation (1.14).

Thinking of the way we iterated smaller and smaller squares to create the 2D Sierpinski relatives

gives us an easy manner of calculating their box-counting Dimensions. At the first step we cover

our fractal with 3 squares, each of side length 1/2. Thus N(1/2) = 3. At each consecutive step, the

three previous squares become 3 more squares each having side length 1/2 of the previous step’s

length. Thus we can say at step k that N(1/2k) = 3k. Epsilon goes to zero as k goes to infinity so

we calculate
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dim(S) = lim
ε→0

log(N(ε))

log(1/ε)
= lim

k→∞

log(3k)

log(2k)
=

log(3)

log(2)
≈ 1.58496.

The analogy to 3D can be used in the same way for the 3D Sierpinski relatives. Say we remove

8−m sub-cubes out of 8, leaving us with m sub-cubes. Then at step one, the side length of each

cube is 1/2, and we need m cubes to cover the attractor. At each next step the side length of the

cube is halved as before, and each of the cubes will result in m more than the previous step. Thus

for m sub-cubes at step k we have that N(1/2k) = mk. Then we have

dim(S) = lim
ε→0

log(N(ε))

log(1/ε)
= lim

k→∞

log(mk)

log(2k)
=

log(m)

log(2)
(2.1)

The table in Figure 2.3 shows the Box counting dimension for m = 1, 2, ...8. There are interesting

implications of these numbers. We discuss each m along-side examples in the following section.

2.1.2 Subsets

It is interesting to examine each subset of our set of attractors formed by keeping m sub-cubes

separately. We discuss briefly the various cases of m alongside a selection of 4 attractors from each

subset. The color of each point in the figures is determined by its physical location in space to help

visualize in 3D; the RBG color value is exactly the x, y, z coordinate in space.

The following table summarizes the different subsets. The “number” column lists how many

possible attractors there are in this subset. Keep in mind this is out of the ≈ 33 trillion fractals. This

is calculated as
(
8
m

)
48m, as we need to choose m cubes to keep, and then a symmetry operation for

each of the m cubes. Dividing these numbers by 48 to eliminate symmetrically-equivalent attractors

gives a tighter bound on the number of truly unique attractors, but the percentages will remain

the same and thus give a better idea of the magnitude of these subsets.

As previously mentioned, the attractor for any IFS with a single contraction mapping will be a

fixed point, so it is clear that the dimension when m = 1 is zero. See figure 2.4. There are 384 of

these fixed point attractors. This is about 1.155 ∗ 10−9 percent of the 33 trillion total attractors, a

very small amount of the total. In fact nearly all of the attractors will be in the also trivial m = 8

case discussed later.

For m = 2 the dimension is exactly 1, see figure 2.5. We do find attractors that are simply

lines in 3d space, but interestingly there are a wide variety of shapes and patterns that emerge in
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m dimm(S) number ≈ percentage

1 0 384 1.1554 ∗ 10−9

2 1 64,512 1.9412 ∗ 10−7

3 1.58496 6,193,152 0.000018635

4 2 371,589,120 0.0011181

5 2.32193 14,269,022,208 0.042936

6 2.58496 342,456,532,992 1.0304

7 2.80735 4,696,546,738,176 14.132

8 3 28,179,280,429,056 84.793

Figure 2.3: box-counting dimensions for a 3D Sierpinski Relative Fractal from m sub-cubes, and

how many of the fractals are in each subset

Figure 2.4: 3D Sierpinski relatives with 1 cube

this case, despite the integer fractal dimension. These fractals are great examples to show us that

integer box-counting dimension does not necessarily imply a non-fractal set.

Figure 2.5: 3D Sierpinski relatives with 2 cubes

Figure 2.6 shows examples when m = 3. The dimension is exactly the same as the 2D relatives,

despite being embedded in 3D space. In fact we can find fractals in this set that are simply the
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2D relatives on any of the faces of the unit cube. Yet despite being less than 2 dimensional, these

fractals also have a wide range of shapes and patterns.

Figure 2.6: 3D Sierpinski relatives with 3 cubes

For m = 4 the dimension is exactly 2. As with m = 2 this case shows us that there can be

complex fractal shapes that have integer box-counting dimension, see figure 2.7.

Figure 2.7: 3D Sierpinski relatives with 4 cubes

For m = 5, 6, 7 with examples shown in figure 2.8 the dimensions are increasing between 2

and 3. As could be expected, the fractals become more and more “dense” in visualizations as the

dimension increases, closer to filling a region of 3D space. When m = 7, only one cube is removed

of the 8 and we find interesting sponge-like structures.

For m = 8 nothing is removed so the attractor becomes the entire cube, no matter which

symmetries are assigned to each sub-cube. Plots of these attractors are omitted. Making up almost

85% of the total number of attractors, this is a very large and boring subset. It is interesting to

note that if we eliminate these attractors from consideration, as well as any symmetric attractors,

we have only 105,284,377,928 remaining attractors, a slightly more manageable amount.
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Figure 2.8: 3D Sierpinski relatives with 5, 6, and 7 cubes

2.1.3 Sierpinski Tetrahedron

The Sierpinski Tetrahedron, or fractal (-1, 0, 0, -1, 0, -1, -1, 0), is shown in Figure 2.9. This Fractal

has been studied previously, and due to its symmetry allows us to calculate exact values of the

Betti growth rates.

Since it is constructed by leaving 4 of the 8 sub-cubes, the fractal dimension of this set is 2. Like

the 2D Sierpinski gasket, this set is fully connected, therefore we know it has a disconnectedness

index of 0.

The most interesting value for this fractal is the “loopiness” index or γ1. Because we know

the set is connected, we know that each of the largest triangular holes on the faces exist in the

true fractal’s topology. Thus we know that there will be an ε neighborhood of the fractal that is

homeomorphic to the second cubical iteration shown in figure 2.10, and more importantly that any

holes in this cubical complex correspond to true holes that exist in the fractal set. This is important

because we know that not only is the Betti number of the epsilon neighborhood the same as the
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Figure 2.9: The Sierpinski Tetrahedron

Betti number of the cubical complex, but also that their respective persistent Betti numbers are

the same. This logic holds for each smaller triangular hole, so we can calculate the true γ1 index

of the fractal in a similar fashion to the box counting dimension if we know β1 of each iterative

cubical complex.

The first iteration, which has only the main triangular holes exposed, can be shown to be

homeomorphic to a solid torus with three holes, thus having β1 = 3. We conjecture that at each

iteration, these three holes remain, but each of the 4 subcubes gives rise to 3 new smaller holes.

Thus for ε = (12)n we have that β1 = 3
∑n

i=1 4i−1 = 4n − 1. We then calculate the growth factor:

γ1 = lim
ε→0

log (β0,ε1 )

log (1/ε)
= lim

n→∞

log (4n − 1)

log (2n)
= 2

Using “Perseus”, a persitent homology program [21] which can analyze cubical complexes of

this kind, we verify our Betti numbers for the first 7 iterations.

Figure 2.10: Cubical Complexes representing epsilon neighborhoods of the Sierpinski Tetrahedron.

The complexes have β1 = 0, 3, 15, and 63 respectively.
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It is rare that we are able to analytically calculate these growth rates with such ease. We

therefore wish to use computational methods to find calculated growth rates. As is often the case

for dynamical system attractors, we begin from a point cloud which approximates the set. This is

obtained by taking the orbit of an iterated function system with the fractal as the attractor. We

use 100,000 points. We then calculate the persistent homology of this point cloud using the alpha

complex, through the GUDHI alpha complex 3d persistence program [22]. Any features that have

persistence intervals of length less than 0.0001 are trimmed to remove excess noisy features. The

Barcode diagram is shown below in figure 2.11.

Figure 2.11: The Barcodes for the Alpha complex on 105 points approximating the Sierpinski

Tetrahedron

Given the persistence intervals, to compute the growth rates of the Betti numbers we need the

cuttoff value ρ above which we can be confident that the alpha complex has comparable homology

to the ε neighborhood of the true fractal. In [4] Robins uses the heuristic:

ρ ≈ the ε value at which there are no isolated points in the filtration

To see how ρ changes with the number of points we calculate ρ for a random orbit for each value

between 10 and 200 points. We repeat this calculation 10 times. We plot these data points as

well as their average and a curve matched to this data assuming a power-law relationship in figure
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2.12. Using this power-law curve our expected cutoff value with 105 points should be ≈ 0.016. We

conservatively use ρ = 0.02 for our calculations.

Figure 2.12: The cut-off value ρ for n points distributed randomly on the Sierpinski Tetrahedron

Once we have our cutoff value we can calculate the persistent Betti numbers from the intervals.

Figure 2.13 shows both the 1st and 2nd Betti numbers as a function of the filtration parameter.

Below these graphs are the persistent Betti numbers βρ,ε1 and βρ,ε2 . This shows the important

difference between the concepts.

For β1 we see a large spike near the beginning and then a stair-case like effect as ε grows. This

is what we expect. Initially there are no holes as each point is an isolated point. As ε grows, the

points begin connecting and forming holes, many are short lived and noisy. This causes the initial

spike. Around ρ the ε neighborhood of the points begins to more accurately reflect that of the true

underlying attractor. As we grow the epsilon neighborhood from here, there are critical epsilon

values at which large groups of holes will close as ε exceeds the diameter of the triangular-shaped

holes described previously. These values are where there are sudden drops in the number of holes,

making the stair effect. The persistent Betti number graph is very similar to the standard Betti

number graph, but is only valid for ε > ρ. This indicates there are few extra holes that form due

to the geometry of the fractal’s ε neighborhood.
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There is however a drastic difference between the graph of β2(ε) and that of βρ,ε2 . The top graph

shows us that there are voids which form inside of the complex as it grows, and they seem to form

and disappear at predictable intervals. This is what we expect. As the triangular holes close, a

void forms within the space between them, but the void is then quickly filled in as ε reaches the

diameter of the space between all 4 triangular loops. The graph of the persistent Betti number

however shows these voids “don’t count” when we are looking at the growth rates. While some

voids have non-trivial persistent interval lengths, the features mostly do not form until after ρ,

because they can not correspond to topological features of the true fractal. The persistent Betti

number is a constant 0, the growth rate γ2 is therefore 0 as well.

Figure 2.13: The Betti numbers and persistent Betti numbers as a function of ε

To find the calculated growth rate of β1 we find the negative slope of the line formed by plotting

the persistent Betti number vs ε on a log-log plot. We use data from the range ρ ≈ 0.02 ≤ ε ≤

0.2. This is shown in Figure 2.14. The calculated negative slope is with 95% confidence interval

2.07 ± 0.06. This is above the true value likely because our cutoff value gives us only half of the

smallest “step” which overestimates the true value. Using more points could give us a better picture

of the true fractal but computation becomes unwieldy. Results are summarized in Figure 2.15.
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Figure 2.14: The persistent Betti numbers as a function of ε

Exact Calculated

Dim 2 -

γ0 0 -

γ1 2 2.07

γ2 0 -

Figure 2.15: Results for various indicies of the Sierpinski Tetrahedron

2.1.4 A “Holey” Fractal

The fractals that remove only one subcube have high fractal dimension log(7)
log(2) ≈ 2.80735 and are

very dense. If the symmetries are chosen correctly, it would make sense that these fractals have

infinitely many cube-shaped voids within them, a perfect example of a non-zero “holiness” index.

The fractal shown in figure 2.16, fractal (0, -1, 0, 0, 0, 0, 0, 0) is one of these fractals.

Figure 2.16: A fractals with voids, fractal (0, -1, 0, 0, 0, 0 , 0, 0).

The sequence of β2 for the cubical complexes of the fractal as shown in figure 2.17, as calculated

using Perseus [21] are as follows:
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Figure 2.17: Cubical Complexes representing epsilon neighborhoods of fractal. The complex has

β2 = 0, 1, 17, and 156.

1, 17, 156, 1210, 8831, 62907 (2.2)

We use an inductive method to find an expression for the sequence. First imagine stacking

7 of the step 0th iterations to create the 1st iteration in figure 2.17 and imagine the single void

within this iteration. Symmetry 0 is the identity so no rotations or inversions or reflections are

performed. Thus if β
(k)
2 is the number of voids at step k we have β

(1)
2 = 1. Now at iteration k

consider the 6 faces of the unit cube. 3 faces, the faces along the coordinate planes (not visible in

figure 2.17), are completely filled in at each iteration. The other 3 faces however each contain the

kth iteration of the classical Sierpinski gasket. Then at the (k+1)th iteration we shrink this down

and arrange 7 of these kth iteration approximations. This rearrangement creates one large void in

the center of the approximation just like in the 1st iteration. Then in addition, each of the 7 kth

iteration approximations will give us 7×(the number of voids in in the kth step) or 7β
(k)
2 . However

the arrangement is in such a way that we place 9 of the Sierpinski gasket sides up against 9 of the

filled in sides. This creates a void for each one of the loops in the 9 kth Sierpinski gaskets. That is

9
(
3k−1
2

)
more voids. Thus in total we have that

β
(k+1)
2 = 1 + 7β

(k)
2 + 9

(
3k − 1

2

)
k = 1, 2, 3, ... (2.3)

Solving this recurrence relation we find the explicit formula

β
(k)
2 =

91

24
7k − 27

8
3k +

7

12
(2.4)

which is fascinatingly always an integer, and matches the sequence (2.2) we calculated.

We wish to show that each of the voids in the cubical complex correspond to true voids in the

fractal set and not just the finite approximation. This is needed to show we can use (2.4) as the

39



persistent Betti number in our calculation of γ2, not just the Betti number. The 3 sides of the cube

which lie on the axes planes

P1 = {(x, y, z) | x ∈ [0, 1], y ∈ [0, 1], z = 0}

P2 = {(x, y, z) | y ∈ [0, 1], z ∈ [0, 1], x = 0}

P3 = {(x, y, z) | z ∈ [0, 1], x ∈ [0, 1], y = 0}

are subsets of the true set. This can be shown using the IFS representation of the the fractal. By

self-similarity we thus know that the 3 sides of each subcube parallel to the axes planes are all also

in the attractor, for example

P = {(x, y, z) | y ∈ [1/2, 1], z ∈ [1/2, 1], x = 1/2}

is a subset of the fractal as well. We can then show that each of the voids counted in (2.4) is

contained within 6 of these planes and thus corresponds to a true void in the fractal set. This

justifies the computation of the “holiness” index or the 2nd growth rate to be

γ2 = lim
ε→0

log (β0,ε2 )

log (1/ε)
= lim

n→∞

log (91247k − 27
8 3k + 7

12)

log (2n)
=

log 7

log 2
≈ 2.80735

which is exactly the same as the dimension of the fractal. Robins conjectures in [4] that if X is a

self-similar fractal set with γi 6= 0 then necessarily γi = dimS(X) where dimS(X) is the similarity

dimension. The similarity dimension is the same as the box-counting dimension in our case, see

[23] for more on self-similarity. Both fractals we have analyzed support this conjecture.

We perform similar computational analysis for this fractal as we did for the Sierpinski tetrahe-

dron. However even with 106 points we are unable to calculate γ2 to a useable precision. The cutoff

ρ decays very slowly with the number of points: using the same methods as before we estimate

ρ ≈ 0.025, even worse than the tetrahedron. This is due to the greater density of points needed to

approximate this fractal with higher fractal dimension. With more points needed computation of

the alpha complex also becomes difficult and slow. However, the persistent Betti numbers βρ,ε2 do

qualitatively support our analysis as seen in figure 2.18.
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Figure 2.18: Persistent Betti numbers βρ,εi as a function of epsilon with ρ = 0.025. Betti 2 shows

the stair-case pattern we expect, at values 1 and 17, the theoretical values β
(1)
2 and β

(2)
2 from (2.4).

Exact

Dim 2.80735

γ0 0

γ1 0

γ2 2.80735

Figure 2.19: Results for the indicies of the fractal
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Chapter 3

Conclusion

Despite thier interesting topological and geometric features, fractals like the Sierpinski relatives

can seem contrived. It is difficult to see an application for these abstract shapes. However, there

is value in studying fractals like these both from an educational as well as an artistic standpoint.

Fractal sets are common in nature, dynamical systems, and other real-world applications. It is

therefore useful to use somewhat contrived examples like the Sierpinski gasket to demonstrate the

kinds of features fractals can have such as non-integer fractal dimension and topological growth

rates. Because these examples are so artificial, they have the advantage that these properties can

be derived analytically. Then techniques such as topological data analysis and persistent homology

can be tested on these sets in order to verify their accuracy and effectiveness.

Our extension of the Sierpinski relatives to 3D extends the uses of the 2D relatives. Just as in

the 2D case, we can analytically derive many properties of these fractals and then perform other

computational techniques to test their accuracy. Adding a dimension adds complexity to the types

of examples we can analyze, for example the classical relatives cannot have a non-zero γ2 as our

“holey” fractal does.

In addition to these academic uses, fractals like these are simply beautiful and interesting to

look at. Self similarity and fractal geometry has been seen in art since ancient times, see [24] for

an example of a Sierpinski triangle found on the floor of a medieval roman church. The 3D fractals

are additionally intriguing and interesting to look at. We hope to be able to visualize and 3D print

some of these fractals in the future.

In addition to future visualization it would be nice to completely categorize the topologies that
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exist within our set of fractals as has been done with the 2D relatives. Given the large number of

fractals that exist this may prove difficult, but if work is done to identify the number of unique

fractals up to symmetry it may be a more manageable computation.

Persistent homology and topological data analysis have been shown to be useful data analysis

techniques, from identifying a sub-group of breast cancers [25] to analyzing coverage in sensor

networks [26]. As technology evolves, we are faced with the analysis of larger and larger data

sets and having examples in 3D is important for education. In higher dimensions visualizing and

understanding the “shape” of the data becomes increasingly difficult, but persistent homology

allows us to quantify and explore the data in new ways.

Analyzing real-world data sets similarly to how we analyze the point-cloud approximation of

the fractals would also be an interesting next-step. Mandelbrot discusses how common fractals

are in nature [23] and how terrain, clouds, and plants can all be modeled with an iterative fractal

process. Work has also been done to identify trees based on the fractal dimension of their leaves,

see [27]. Perhaps 3D data from these types of natural objects could be used similarly, for example

identifying plants based on their “loopiness”, or rocks and clouds based on their “holiness”. This

could lead to new tools for object identification and recognition.
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Appendix A

Group Theory

Some definitions from group theory follow. These are necessary for understanding homology theory

as discussed in chapter 1. Often groups and free groups are described using multiplicative notation

(· instead of +), however the groups we deal with in this thesis, particularly the chain groups and

their subsets, use additive notation so we adopt that here.

Definition of a Group

A Group, denoted G = (S,+), is a set S along with an operation + that satisfies the following

properties:

• Closure: for all a, b ∈ S, a+ b is in S as well.

• Associativity: for all a, b, c ∈ S, we have (a+ b) + c = a+ (b+ c)

• Identity: there is a unique identity element e such that a+ e = e+ a = a for all a ∈ S

• Inverse: for all a ∈ S there is an inverse element −a such that a+ (−a) = (−a) + a = e
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Definition of a Free Group

A Free Group is the infinite group on the set of all “words” or sums that can be constructed from

a generating set S and its inverse S−1. For example consider the set S = {a, b} and its inverse

S−1 = {−a,−b}. We denote the Free group with S as a generating set as Fs.

FS = ({a, b,−a,−b, a+ a = 2a, a+ b, b− a, a+ (−a) + b+ b = 2b, ...},+)
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Appendix B

Symmetry Groups

We discuss the symmetry groups for both the square and cube. These are important to understand

the Sierpinski relatives. For more see [19].

A square has a number of symmetries: ways in which we can flip/rotate the shape in order to

give us the same square. For example we can flip the square along its diagonal and the resulting

shape is identically a square. We could rotate the square 90 degrees and again get a square. These

examples are illustrated in Figure B.1. We inscribe an L in the square to visualize the operation

performed.

Figure B.1: Examples of two symmetries of the square, reflection about the diagonal (d6) and

rotation by 90 degrees (d3)

The set of possible symmetries of a square can be equipped with the operation of concatenation,

thus creating a group. For example, if we flip the square down its middle and then rotate it 90

degrees clockwise, we get the same square we would if we simply reflected the square along its

diagonal. This is illustrated in Figure B.2. We can denote each element of the symmetry group of

the square by di. The index of each symmetry is arbitrary, but we use the ordering as defined in

[19]. Flipping along the vertical center line is d5 and rotating 90 degrees is d3, so we have d5d3 = d6
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where d6 is the symmetry representing reflection about the diagonal. There are 8 symmetries total.

This is the 4th dihedral group, D4. The elements of D4 representing the symmetries of the square

are shown in Figure B.3. See [28] for more on dihedral groups and group theory.

Figure B.2: Preforming two symmetry operations results in a third different operation

Figure B.3: All 8 symmetries of the square

Since we know two elements concatenated will give us a third element, we can create a ”multipli-

cation table” of sorts which shows what the ”product” of two group elements is. This is commonly

called a Cayley table. We show the Cayley table of D4 in figure B.4.

This symmetry group is important for our later examples of the Sierpinski relatives. The size

of this group is directly related to how many fractals we can create. See the following section for

more on this.

In chapter 2 we will extend the 2D Sierpinski relatives to a new class of 3D fractals. In 2D we

need the symmetry group of the square, in 3D we are interested in the symmetries of the cube.

This is also a commonly studied group, called the full octahedral symmetry group [29]. Whereas

the square’s symmetry group has 8 elements/symmetries, this group has 48. We show a few of
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i

0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 2 3 0 7 6 4 5

2 2 3 0 1 5 4 7 6

3 3 0 1 2 6 7 5 4

j 4 4 6 5 7 0 2 1 3

5 5 7 4 6 2 0 3 1

6 6 5 7 4 3 1 0 2

7 7 4 6 5 1 3 2 0

Figure B.4: The Cayley Table for the D4 group. Choosing a column i and a row j gives the

subscript for operation didj

the elements of this group in Figure B.6. A 3D analog of the inscribed L is placed in the cube to

visualize the operation on the cube in 3D space. The ordering of the elements is again arbitrary but

we use the conventional ordering where the first 24 elements follow the ordering of the symmetric

group S4 (the subgroup excluding inversions). The final 24 are the inversions of those first 24. We

also show the Cayley table of this group, but since it is so large we visualize the table with colors

instead of numbers, see Figure B.5.
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Figure B.5: Visualization of the Cayley table for the 3d Cube’s symmetry group. Each element

from 0-47 is represented by a color ranging from red to pink.

Figure B.6: 8 symmetries of the cube. Element 0 is the identity, others show rota-

tions/reflections/inversions.
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